会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Combustion of nanopartitioned fuel
    • 燃烧纳米颗粒燃料
    • US06235067B1
    • 2001-05-22
    • US08933787
    • 1997-09-19
    • Brian S. AhernHarry R. Clark, Jr.Keith H. Johnson
    • Brian S. AhernHarry R. Clark, Jr.Keith H. Johnson
    • B01J1300
    • C10L1/328F02B3/02F02B3/06F02B51/06G21B3/00H05H1/00Y02E30/18Y02T10/126
    • The invention provides a scheme for combusting a hydrocarbon fuel to generate and extract enhanced translational energy. In the scheme, hydrocarbon fuel is nanopartitioned into nanometric fuel regions each having a diameter less than about 1000 angstroms; and either before or after the nanopartitioning, the fuel is introduced into a combustion chamber. In the combustion chamber, a shock wave excitation of at least about 50,000 psi and with an excitation rise time of less than about 100 nanoseconds is applied to the fuel. A fuel partitioned into such nanometric quantum confinement regions enables a quantum mechanical condition in which translational energy modes of the fuel are amplified, whereby the average energy of the translational energy mode levels is higher than it would be for a macro-sized, unpartitioned fuel. Combustion of such a nanopartitioned fuel provides enhanced translational energy extraction by way of, e.g., a reciprocating piston because only the translational energy mode of combustion products appreciably contributes to momentum exchange with the piston. The shock wave excitation provided by the invention, as applied to combustion of any fuel, and preferably to a nanopartitioned fuel, enhances translational energy extraction and exchange during combustion by enhancing translational energy mode amplification in the fuel and by enhancing transfer of an appreciable amount of energy from that translational mode to the piston before the combusted fuel re-equilibrates the translational energy into other energy modes.
    • 本发明提供一种用于燃烧碳氢化合物燃料以产生和提取增强的平移能量的方案。 在该方案中,碳氢化合物燃料被纳米级纳入每个直径小于约1000埃的纳米燃料区域; 并且在纳米颗粒之前或之后,将燃料引入燃烧室。 在燃烧室中,至少约50,000psi的冲击波激发和小于约100纳秒的激发上升时间被施加到燃料。 分配到这种纳米量子限制区域中的燃料使得能够扩大燃料的平移能量模式的量子力学条件,由此平移能量模式水平的平均能量高于对于大型未分配燃料的平均能量。 这种纳米颗粒燃料的燃烧通过例如往复活塞提供增强的平移能量提取,因为只有燃烧产物的平移能量模式明显有助于与活塞的动量交换。 本发明提供的冲击波激发,适用于任何燃料的燃烧,优选应用于纳米颗粒的燃料,通过增加燃料中的平移能量模式扩增,并通过增强转移可观量的燃料来增强燃烧过程中的平移能量提取和交换 在燃烧的燃料将平移能量重新平衡到其他能量模式之前,从该平移模式到活塞的能量。
    • 3. 发明授权
    • Semiconductor particle electroluminescent display
    • 半导体颗粒电致发光显示器
    • US06049090A
    • 2000-04-11
    • US797063
    • 1997-02-10
    • Harry R. Clark, Jr.
    • Harry R. Clark, Jr.
    • H01L33/00H01L51/50H01L29/06
    • H01L51/5012B82Y20/00B82Y30/00
    • An electroluminescent display device having a semiconductor host matrix which is characterized by a conduction band energy level, a valence band energy level, and a bandgap energy corresponding to an energy difference between a minima of the conduction band and a maxima of the valence band energy levels. Semiconductor particles are disposed in the semiconductor host matrix, and at least a portion of these semiconductor particles are characterized by a conduction band energy level that is less than that of the host matrix. These semiconductor particles are further characterized by a valence band energy level and a bandgap energy, corresponding to an energy difference between a minima of the conduction band and a maxima of the valence band energy levels of the particles, that is less than the bandgap energy of the semiconductor host matrix. There is included in the display configuration a mechanism for providing electrons and holes at locations of the semiconductor particles, by way of conduction through the semiconductor host matrix, for recombination at the particle locations, between the conduction band minima and the valence band maxima of the particles, to produce luminescent radiation. With a semiconductor host matrix that enables conduction of holes and electrons freely through it, the electroluminescent display of the invention overcomes the severe quantum efficiency limitations imposed by conventional luminescent display configurations.
    • 具有半导体主体矩阵的电致发光显示装置,其特征在于导带能级,价带能级和对应于导带的最小值与价带能量级的最大值之间的能量差的带隙能量 。 半导体颗粒设置在半导体主体基质中,并且这些半导体颗粒的至少一部分的特征在于小于主体基质的导带能级。 这些半导体颗粒的进一步特征在于价带能级和带隙能量,其对应于导带的最小值与颗粒的价带能级的最大值之间的能量差,小于带隙能级 半导体主机矩阵。 在显示器配置中包括一种用于在半导体颗粒的位置处提供电子和空穴的机制,通过半导体主体基质的传导,在颗粒位置的重组,导带最小值和 颗粒,以产生发光辐射。 利用能够通过空穴和电子自由传导的半导体主体矩阵,本发明的电致发光显示器克服了常规发光显示结构所施加的严重的量子效率限制。
    • 4. 发明授权
    • Method of maximizing anharmonic oscillations in deuterated alloys
    • 最大化氘代合金中的非谐振荡的方法
    • US5674632A
    • 1997-10-07
    • US331014
    • 1994-10-28
    • Brian S. AhernKeith H. JohnsonHarry R. Clark, Jr.
    • Brian S. AhernKeith H. JohnsonHarry R. Clark, Jr.
    • C25B11/08F02B3/06F02B51/06G21B3/00H05H1/00B32B33/00
    • H05H1/00F02B51/06G21B3/002F02B3/06Y02T10/126Y10T428/12472Y10T428/12493Y10T428/12778Y10T428/12875Y10T428/12944
    • For a condensed matter system containing a guest interstitial species such as hydrogen or its isotopes dissolved in the condensed matter host lattice, the invention provides tuning of the molecular orbital degeneracy of the host lattice to enhance the anharmonicity of the dissolved guest sublattice to achieve a large anharmonic displacement amplitude and a correspondingly small distance of closest approach of the guest nuclei. The tuned electron molecular orbital topology of the host lattice creates an energy state giving rise to degenerate sublattice orbitals related to the second nearest neighbors of the guest bonding orbitals. Thus, it is the nuclei of the guest sublattice that are set in anharmonic motion as a result of the orbital topology. This promotion of second nearest neighbor bonding between sublattice nuclei leads to enhanced interaction between nuclei of the sublattice. In the invention, a method for producing dynamic anharmonic oscillations of a condensed matter guest species dissolved in a condensed matter host lattice is provided. Host lattice surfaces are treated to provide surface features on at least a portion of the host lattice surfaces; the features have a radius of curvature less than 0.5 microns. Upon dissolution of the guest species in the treated host lattice in a ratio of at least 0.5, the guest species undergoes the dynamic anharmonic oscillations.
    • 对于包含溶解在浓缩物质主晶格中的诸如氢或其同位素的客体间质物质的凝聚物体系,本发明提供了主晶格的分子轨道简并性的调谐,以增强溶解的客体亚晶格的非调和性,以实现大的 非调谐位移振幅和相对较小的客机核心距离最接近。 主晶格的调谐电子分子轨道拓扑形成能量状态,产生与客体键合轨道的第二最近邻近相关的退化亚晶格轨道。 因此,作为轨道拓扑的结果,客体子格子的核心被设置为非调谐运动。 这种对亚晶格核之间的第二近邻键合的促进导致子晶格的核之间增强的相互作用。 在本发明中,提供了一种用于产生溶解在凝聚物宿主晶格中的冷凝物质物质的动态非调谐振荡的方法。 处理主晶格表面以在主晶格表面的至少一部分上提供表面特征; 这些特征具有小于0.5微米的曲率半径。 在客体物质以至少为0.5的比例溶解处理的主体晶格时,客体物质经历动态非谐振荡。
    • 5. 发明申请
    • THERMAL IMAGER
    • 热像仪
    • US20120188474A1
    • 2012-07-26
    • US13192523
    • 2011-07-28
    • Robert K. ReichHarry R. Clark
    • Robert K. ReichHarry R. Clark
    • G02F1/13357
    • H04N5/33G01J5/58G01J2005/0077G02F1/132
    • The imager includes a lens for focusing infrared light forming a thermal image onto a liquid crystal array thereby changing the temperature of the liquid crystals to alter a physical property of the liquid crystals. A source of visible polarized light is arranged to illuminate the liquid crystal array so that the polarization of light reflected from the liquid crystal array varies with changes in temperature of the liquid crystals. A cross polarizer receives and transmits therethrough the light reflected from the liquid crystal array, the cross polarizer adapted to change the intensity of the light. An imager receives and detects the change in intensity of the light from the cross polarizer so that the thermal image is recreated as an electronic signal. In a preferred embodiment, the physical property is index of refraction and the liquid crystal array includes birefringent nematic liquid crystals.
    • 成像器包括用于将形成热图像的红外光聚焦到液晶阵列上的透镜,从而改变液晶的温度以改变液晶的物理性质。 可见偏振光源被布置成照亮液晶阵列,使得从液晶阵列反射的光的偏振随着液晶的温度变化而变化。 交叉偏振器从其中接收并透射从液晶阵列反射的光,交叉偏振器适于改变光的强度。 成像器接收并检测来自交叉偏振器的光的强度变化,使得热图像被重新创建为电子信号。 在优选实施例中,物理性质是折射率,液晶阵列包括双折射向列型液晶。
    • 8. 发明授权
    • Method for producing semiconductor particles
    • 半导体粒子的制造方法
    • US5690807A
    • 1997-11-25
    • US510802
    • 1995-08-03
    • Harry R. Clark, Jr.Brian S. Ahern
    • Harry R. Clark, Jr.Brian S. Ahern
    • H01L33/34C25F3/12
    • H01L33/346C25F3/12H01L2924/0002
    • The invention provides a method for producing semiconductor particles in which a semiconductor material of the type for which particles are desired is placed in an electrolytic solution of an anodic cell. The anodic cell is configured with a cathode also positioned in the electrolytic solution. The electrolytic solution of the anodic cell includes an etchant and a surfactant that is characterized by an attractive affinity for the semiconductor material. To produce semiconductor particles from the semiconductor material, an electrical potential is applied between the semiconductor material in the electrolytic solution and the cathode in the electrolytic solution to anodically etch the semiconductor material. During the etch process, particles of the semiconductor material form and are encapsulated by the surfactant. This method for producing semiconductor particles uses an uncomplicated apparatus and procedure that results in inexpensive and high-volume production of particles of a semiconductor material.
    • 本发明提供一种制造半导体颗粒的方法,其中将需要颗粒的类型的半导体材料放置在阳极电池的电解液中。 阳极电池配置有也位于电解液中的阴极。 阳极电池的电解液包括蚀刻剂和表面活性剂,其特征在于对半导体材料有吸引力的亲和力。 为了从半导体材料制造半导体颗粒,在电解液中的半导体材料和电解液中的阴极之间施加电位以对半导体材料进行阳极蚀刻。 在蚀刻过程中,半导体材料的颗粒形成并被表面活性剂包封。 这种半导体颗粒的制造方法使用导致半导体材料颗粒的廉价且大量生产的简单的装置和程序。
    • 10. 发明授权
    • Method of maximizing anharmonic oscillations in deuterated alloys
    • 最大化氘代合金中的非谐振荡的方法
    • US5411654A
    • 1995-05-02
    • US86821
    • 1993-07-02
    • Brian S. AhernKeith H. JohnsonHarry R. Clark, Jr.
    • Brian S. AhernKeith H. JohnsonHarry R. Clark, Jr.
    • C25B11/08F02B3/06F02B51/06G21B3/00H05H1/00C25B9/00C25C7/00C25C7/02
    • H05H1/00F02B51/06G21B3/002F02B3/06Y02T10/126Y10T428/12472Y10T428/12493Y10T428/12778Y10T428/12875Y10T428/12944
    • For a condensed matter system containing a guest interstitial species such as hydrogen or its isotopes dissolved in the condensed matter host lattice, the invention provides tuning of the molecular orbital degeneracy of the host lattice to enhance the anharmonicity of the dissolved guest sublattice to achieve a large anharmonic displacement amplitude and a correspondingly small distance of closest approach of the guest nuclei. The tuned electron molecular orbital topology of the host lattice creates an energy state giving rise to degenerate sublattice orbitals related to the second nearest neighbors of the guest bonding orbitals. Thus, it is the nuclei of the guest sublattice that are set in anharmonic motion as a result of the orbital topology. This promotion of second nearest neighbor bonding between sublattice nuclei leads to enhanced interaction between nuclei of the sublattice. In the invention, a method for producing dynamic anharmonic oscillations of a condensed matter guest species dissolved in a condensed matter host lattice is provided. Host lattice surfaces are treated to provide surface features on at least a portion of the host lattice surfaces; the features have a radius of curvature less than 0.5 microns. Upon dissolution of the guest species in the treated host lattice in a ratio of at least 0.5, the guest species undergoes the dynamic anharmonic oscillations.
    • 对于包含溶解在浓缩物质主晶格中的诸如氢或其同位素的客体间质物质的凝聚物体系,本发明提供了主晶格的分子轨道简并性的调谐,以增强溶解的客体亚晶格的非调和性,以实现大的 非调谐位移振幅和相对较小的客机核心距离最接近。 主晶格的调谐电子分子轨道拓扑形成能量状态,产生与客体键合轨道的第二最近邻近相关的退化亚晶格轨道。 因此,作为轨道拓扑的结果,客体子格子的核心被设置为非调谐运动。 这种对亚晶格核之间的第二近邻键合的促进导致子晶格的核之间增强的相互作用。 在本发明中,提供了一种用于产生溶解在凝聚物宿主晶格中的冷凝物质物质的动态非调谐振荡的方法。 处理主晶格表面以在主晶格表面的至少一部分上提供表面特征; 这些特征具有小于0.5微米的曲率半径。 在客体物质以至少为0.5的比例溶解处理的主体晶格时,客体物质经历动态非谐振荡。