
基本信息:
- 专利标题: 一种用于浓度预测的气体传感器在线漂移补偿方法
- 申请号:CN202211523964.5 申请日:2022-12-01
- 公开(公告)号:CN115808504B 公开(公告)日:2024-06-04
- 发明人: 宋凯 , 色海锋 , 姜金海 , 孙传禹 , 刘继江 , 张伟岩 , 王煊赫
- 申请人: 哈尔滨工业大学 , 中国电子科技集团公司第四十九研究所
- 申请人地址: 黑龙江省哈尔滨市南岗区西大直街92号
- 专利权人: 哈尔滨工业大学,中国电子科技集团公司第四十九研究所
- 当前专利权人: 哈尔滨工业大学,中国电子科技集团公司第四十九研究所
- 当前专利权人地址: 黑龙江省哈尔滨市南岗区西大直街92号
- 代理机构: 哈尔滨奥博专利代理事务所(普通合伙)
- 代理人: 桑林艳
- 主分类号: G01N33/00
- IPC分类号: G01N33/00
摘要:
本发明公开了一种用于浓度预测的气体传感器在线漂移补偿方法。步骤1:目标区域的,所述数据集包括带有标签的源域数据集及无标签的目标域数据集;对源域数据进行归一化,使其样本和标签都处于‑1至1之间;步骤2:基于步骤1的源域数据集训练OELM,从而建立浓度预测模型;步骤3:基于步骤2的浓度预测模型略对目标域的气体传感器样本进行浓度预测;步骤4:基于步骤3预测的浓度利用SQS方法判断当前样本是否需要进行人工标注,若不需要人工标注则进行步骤5;若需要人工标注则进行步骤6;步骤5:重新回到步骤3;步骤6:标注该样本并使用它对OELM进行更新。本发明用以解决现有技术中漂移补偿不能在线应用于浓度预测及人工标注成本高的问题。
公开/授权文献:
- CN115808504A 一种用于浓度预测的气体传感器在线漂移补偿方法 公开/授权日:2023-03-17
IPC结构图谱:
G | 物理 |
--G01 | 测量;测试 |
----G01N | 借助于测定材料的化学或物理性质来测试或分析材料 |
------G01N33/00 | 利用不包括在G01N1/00至G01N31/00组中的特殊方法来研究或分析材料 |