
基本信息:
- 专利标题: 一种基于变分推理贝叶斯神经网络的洪水集合预报方法
- 专利标题(英):A variation reasoning Bayesian neural network-based flood ensemble forecasting method
- 申请号:CN201910058334.7 申请日:2019-01-22
- 公开(公告)号:CN109902801A 公开(公告)日:2019-06-18
- 发明人: 覃晖 , 刘永琦 , 许继军 , 肖雪 , 姚立强 , 李清清 , 张振东 , 李杰 , 裴少乾 , 卢健涛 , 朱龙军 , 汤凌云 , 刘冠君 , 田锐
- 申请人: 华中科技大学 , 长江水利委员会长江科学院
- 申请人地址: 湖北省武汉市洪山区珞喻路1037号
- 专利权人: 华中科技大学,长江水利委员会长江科学院
- 当前专利权人: 华中科技大学,长江水利委员会长江科学院
- 当前专利权人地址: 湖北省武汉市洪山区珞喻路1037号
- 代理机构: 华中科技大学专利中心
- 代理人: 李智; 曹葆青
- 主分类号: G06N3/04
- IPC分类号: G06N3/04 ; G06N3/08 ; G06N5/04 ; G01W1/10
The invention discloses a variation reasoning Bayesian neural network-based flood ensemble forecasting method. The method comprises the following steps of: setting dimensions of each layer of a Bayesian neural network; Selecting the prior probability distribution of the weight parameters of the Bayesian neural network, and parameterizing the weight parameters of the Bayesian neural network throughthe variational parameters to approximate the posterior probability distribution of the weight parameters of the Bayesian neural network; Calculating the relative entropy of the prior probability distribution and the variation posterior probability distribution, and calculating an expected log-likelihood function according to the training data set; Constructing an objective function according tothe relative entropy and the expected log-likelihood function; maximizing a target function, and training variational reasoning parameters; And carrying out ensemble forecasting on unknown flood by using the trained variational reasoning Bayesian neural network. According to the method, the variational reasoning is combined with the BNN model, and the posterior probability of the weight parametersof the Bayesian network model is approximated through variational distribution, so that the calculation process is simplified, the uncertainty of flood forecasting is quantitatively described, and the accuracy is improved.
公开/授权文献:
- CN109902801B 一种基于变分推理贝叶斯神经网络的洪水集合预报方法 公开/授权日:2020-11-17
IPC结构图谱:
G | 物理 |
--G06 | 计算;推算;计数 |
----G06N | 基于特定计算模型的计算机系统 |
------G06N3/00 | 基于生物学模型的计算机系统 |
--------G06N3/02 | .采用神经网络模型 |
----------G06N3/04 | ..体系结构,例如,互连拓扑 |