
基本信息:
- 专利标题: EWT分位数回归森林的短期风电功率概率密度预测方法
- 专利标题(英):Method for predicting short-term wind power probability density based on EWT quantile regression forest
- 申请号:CN201710850654.7 申请日:2017-09-20
- 公开(公告)号:CN107704953A 公开(公告)日:2018-02-16
- 发明人: 孙国强 , 梁智 , 卫志农 , 臧海祥 , 周亦洲
- 申请人: 河海大学
- 申请人地址: 江苏省南京市鼓楼区西康路1号
- 专利权人: 河海大学
- 当前专利权人: 河海大学
- 当前专利权人地址: 江苏省南京市鼓楼区西康路1号
- 代理机构: 南京苏高专利商标事务所
- 代理人: 刘渊
- 主分类号: G06Q10/04
- IPC分类号: G06Q10/04 ; G06Q50/06
The invention discloses a method for predicting the short-term wind power probability density based on the EWT quantile regression forest. The method comprises the steps of 1) decomposing an originalwind power sequence into a series of mutually different feature empirical modes by using the empirical wavelet transform (EWT); 2) recombining the empirical modes according to a frequency range to form high frequency, intermediate frequency and low frequency components; 3) select an input variable for each component by using the Pearson correlation coefficient; 4) establishing a quantile regression forest prediction model for each component, and obtaining regression prediction results of different quantile points; 5) superposing the prediction results of the components to obtain a wind power prediction value; and 6) obtaining the prediction of the wind power probability density by nuclear density estimation. The method provided by the invention effectively improves the prediction precisionof the wind power, obtains the prediction of the wind power probability density at any moment, and can well solve the wind power prediction problem in a power system.