
基本信息:
- 专利标题: SBR法氨氧化过程神经网络智能控制的方法
- 专利标题(英):Method for intelligently controlling ammoxidation process of SBR method by neural network
- 申请号:CN201611200797.5 申请日:2016-12-22
- 公开(公告)号:CN106651032A 公开(公告)日:2017-05-10
- 发明人: 杨庆 , 杨玉兵 , 刘秀红 , 冯红利 , 李健敏 , 李健伟
- 申请人: 北京工业大学
- 申请人地址: 北京市朝阳区平乐园100号
- 专利权人: 北京工业大学
- 当前专利权人: 北京工业大学
- 当前专利权人地址: 北京市朝阳区平乐园100号
- 代理机构: 北京思海天达知识产权代理有限公司
- 代理人: 张立改
- 主分类号: G06Q10/04
- IPC分类号: G06Q10/04 ; G06N3/08
A method for intelligently controlling an ammoxidation process of a SBR method by a neural network belongs to the field of wastewater treatment methods. In a SBR system, a real-time control strategy is used to control the aeration time, and a three-layer BP neural network predictive control model is established based on the long-term stable operation SBR data. Then, the ammonia nitrogen concentration is predicted in advance according to the online detection pH data; a model establishment process is mainly based on data collection, data processing and model establishment; under the condition of constant dissolved oxygen (DO), the BP neural network model is used to train, calibrate and test the data. After the accuracy requirement is met, the neural network predictive control model is used in the SBR system to predict and control the ammoxidation process.
公开/授权文献:
- CN106651032B SBR法氨氧化过程神经网络智能控制的方法 公开/授权日:2022-03-04