
基本信息:
- 专利标题: 一种基于SOM神经网络的变压器故障检测方法
- 专利标题(英):Transformer fault detection method based on SOM (Self Organizing Map) neural network
- 申请号:CN201611042679.6 申请日:2016-11-22
- 公开(公告)号:CN106443310A 公开(公告)日:2017-02-22
- 发明人: 李敏 , 陈果 , 石同春 , 沈大千 , 秦少鹏 , 向天堂 , 邓权伦 , 罗宇昆 , 高翔 , 陈大浩 , 王亨桂 , 陈飞洋
- 申请人: 国网四川省电力公司广安供电公司 , 国家电网公司
- 申请人地址: 四川省广安市金安大道199号
- 专利权人: 国网四川省电力公司广安供电公司,国家电网公司
- 当前专利权人: 国网四川省电力公司广安供电公司,国家电网公司
- 当前专利权人地址: 四川省广安市金安大道199号
- 代理机构: 成都行之专利代理事务所
- 代理人: 冯龙
- 主分类号: G01R31/02
- IPC分类号: G01R31/02 ; G06N3/02
The invention discloses a transformer fault detection method based on an SOM (Self Organizing Map) neural network. The method comprises the following steps: S100: selecting a transformer as a testing object, and acquiring vibration signals of the transformer in different states as sample data; S200: decomposing and extracting a characteristic vector by utilizing ensemble empirical mode decomposition in Hilbert-Huang transform; S300: inputting the characteristic vector into the SOM neural network; S400: calculating a distance between a weight of a mapping layer and an input vector; S500: adjusting weights of an efferent neuron and an adjacent neuron; S600: judging whether pre-set conditions are met or not, and finishing SOM neural network training to obtain a testing sample; and S700: inputting the testing sample, and outputting the transformer fault type corresponding to the testing sample according to the network, thereby realizing the technical effect of online detection of the transformer.
公开/授权文献:
- CN106443310B 一种基于SOM神经网络的变压器故障检测方法 公开/授权日:2018-12-28
IPC结构图谱:
G | 物理 |
--G01 | 测量;测试 |
----G01R | 测量电变量;测量磁变量(通过转换成电变量对任何种类的物理变量进行测量参见G01类名下的 |
------G01R31/00 | 电性能的测试装置;电故障的探测装置;以所进行的测试在其他位置未提供为特征的电测试装置 |
--------G01R31/02 | .对电设备、线路或元件进行短路、断路、泄漏或不正确连接的测试 |