会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • CONDUCTIVE PROBE FOR SCANNING MICROSCOPE AND MACHINING METHOD USING THE SAME
    • 用于扫描显微镜的导电性探针和使用其的加工方法
    • WO02042741A1
    • 2002-05-30
    • PCT/JP2001/008615
    • 2001-09-28
    • B82B1/00B82B3/00G01Q60/16G01Q60/38G01Q60/40G01Q70/00G01Q70/12G01N13/12G12B21/04
    • G01Q60/16G01Q60/38G01Q60/54G01Q70/12
    • A conductive probe for a scanning microscope capable of applying a voltage between a conductive nanotube serving as a probe and a specimen or a current to them. A conductive probe (20) for a scanning microscope for collecting physical properties of the surface of a specimen by means of the tip (14a) of a conductive nanotube probe (12) fixed to a cantilever (4) is characterized in that the conductive probe (20) is composed of a conductive coating (17) provided on the surface of the cantilever (4), a conductive nanotube (12) the root part (16) of which is provided in contact with the surface of the necessary portion of the cantilever (4), and a conductive deposit (18) covering from the root part (16) to a part of the conductive coating (17) and fixing the conductive nanotube (12), and the conductive nanotube (12) is electrically connected to the conductive coating (17) through the conductive deposit (18).
    • 用于能够在用作探针的导电纳米管和样品之间施加电压的扫描显微镜的导电探针或电流。 一种用于通过固定到悬臂(4)的导电性纳米管探针(12)的尖端(14a)收集试样表面的物理特性的扫描显微镜的导电探针(20),其特征在于,导电探针 (20)由设置在所述悬臂(4)的表面上的导电涂层(17),导电性纳米管(12)构成,所述导电性纳米管的根部(16)设置成与所述悬臂 悬臂(4)和从根部(16)覆盖到导电涂层(17)的一部分并且固定导电纳米管(12)的导电沉积物(18),并且导电纳米管(12)电连接到 导电涂层(17)穿过导电沉积物(18)。
    • 5. 发明申请
    • NANOSCALE SENSOR
    • 纳米传感器
    • WO02031183A1
    • 2002-04-18
    • PCT/US2001/031615
    • 2001-10-10
    • G01N33/566B82B3/00C12M1/34C12Q1/00C12Q1/48G01N13/12G01N27/04G01N33/543G12B21/04G01N27/26
    • B82Y15/00C12Q1/001C12Q1/48G01N27/041G01N33/54373G01N2333/91245
    • In the present invention, organic, inorganic, or other molecules or objects that may participate in an interaction event, are physically linked to nanoscale objects, typified, but not limited to, carbon nanotubes, silicon nanotubes, nanobars, and biological structural elements, such as microtubules and actin filaments, to create a signal transduction system that reports events on the micron scale or smaller. A molecular interaction even is monitored utilizing an amp meter or utilizing a scanning tunneling microscope so that when the molecules or objects participate in a molecule interaction event, or some other interaction event, the movement or change in the physical properties of the nanotube is monitored to report the occurrence of the interaction event.
    • 在本发明中,可能参与相互作用事件的有机,无机或其他分子或物体与纳米尺度物体物理连接,典型但不限于碳纳米管,硅纳米管,纳米棒和生物结构元件,例如 作为微管和肌动蛋白丝,以产生报告微米级或更小的事件的信号转导系统。 甚至使用放大计或利用扫描隧道显微镜来监测分子相互作用,使得当分子或物体参与分子相互作用事件或一些其他相互作用事件时,纳米管的物理性质的运动或变化被监测到 报告交互事件的发生。
    • 6. 发明申请
    • MICROMACHINED MICROPROBE TIP
    • WO01006516A1
    • 2001-01-25
    • PCT/US2000/040336
    • 2000-07-11
    • B81B1/00G01B7/34G01N27/00G01Q60/38G01Q70/10G12B1/02G12B21/08G12B21/04
    • G01Q60/38G01Q70/10
    • A probe having a probe tip (84), especially for use in an atomic force microscope, formed by micromachining techniques in a silicon wafer (94). The tip is photolithographically defined in a layer (80), preferably of silicon nitride deposited on the silicon wafer and has a width and thickness of usually less than 250nm. Thereby, the probe tip can be formed to have a generally square cross section in which one lateral dimension is determined by the layer thickness, and the other lateral dimension by the photolithography or by a subsequent step of focused ion beam milling. The portion of the silicon wafer underlying the area probe tip is etched away, preferably before the probe tip is etched, but another portion of the silicon is left to serve as a support at the base of the probe tip. A hinge may be formed in the silicon wafer, and the probe tip together with a robust shank can be made to rotate to a direction perpendicular to the wafer surface.
    • 具有探针尖端(84)的探针,特别是用于在硅晶片(94)中通过微加工技术形成的原子力显微镜。 尖端被光刻地限定在层(80)中,优选沉积在硅晶片上的氮化硅,并且具有通常小于250nm的宽度和厚度。 因此,探针尖端可以形成为具有大致正方形的横截面,其中一个横向尺寸由层厚确定,另一个横向尺寸由光刻法或后续的聚焦离子束铣削步骤确定。 位于区域探针尖端下方的硅晶片的部分被蚀刻掉,优选在探针尖端被蚀刻之前被蚀刻,而另一部分硅留下来用作探针尖端底部的支撑体。 可以在硅晶片中形成铰链,并且可以使探针尖端与坚固的柄一起旋转到垂直于晶片表面的方向。
    • 7. 发明申请
    • IMAGING APPARATUS AND METHOD
    • 成像装置和方法
    • WO2009125229A1
    • 2009-10-15
    • PCT/GB2009/050357
    • 2009-04-09
    • FINLAN, Martin, F.WILKINS, Shelley
    • FINLAN, Martin, F.WILKINS, Shelley
    • G01N13/18G12B21/04
    • G01Q60/44
    • The imaging apparatus comprises a micro-pipette (11) having a first electrode (12) within it and a second electrode (13) close to but outside of the micro- pipette (11). As the tip of the micro-pipette is brought close to a sample (14) variation of the current flowing between the two electrodes is representative of the distance separating the tip of the micro-pipette and the sample surface and monitoring variations in the current flow enables the topography of the sample surface to be imaged. To establish current flow between the two electrodes, an ionising source such as a UV lamp is used to ionise the environment in which the electrodes are located. The imaging apparatus enables scanning ion conductance microscopy to be performed without the need for the sample to be immersed in an electrolyte solution.
    • 成像装置包括在其内具有第一电极(12)的微量移液管(11)和靠近微型移液管(11)的外部的第二电极(13)。 当微型移液管的尖端靠近样品(14)时,在两个电极之间流动的电流的变化代表分离微量移液管的尖端和样品表面的距离,并监测电流的变化 使样品表面的形貌成像。 为了在两个电极之间建立电流,使用诸如UV灯的电离源来电离所述电极所处的环境。 成像装置能够进行扫描离子电导显微术,而不需要将样品浸入电解质溶液中。
    • 9. 发明申请
    • MAGNETIC SENSING OF MOTION IN MICROFABRICATED DEVICES
    • 微型装置运动的磁感测
    • WO01020616A1
    • 2001-03-22
    • PCT/IB2000/001256
    • 2000-09-06
    • G01B7/00B81B3/00G01B7/14G01B7/34G01D5/14G01N27/00G01Q20/00G01R33/06G11B9/00G11B21/21G12B21/08G12B21/04
    • G01Q20/00G11B9/1418G11B21/21
    • A magnetic sensing unit for measuring displacements on a nanometer scale is disclosed. For that, a moveable part and a fixed part of a microdevice comprises a magnetic element having a magnetic field and a magnetic sensor. The magnetic element being located on the moveable part and the magnetic sensor on the fixed part, or the magnetic sensor being located on the moveable part and the magnetic element on the fixed part, the magnetic sensor and/or the magnetic element being an integral part of the microdevice. The magnetic element and the magnetic sensor being arranged relative to each other such that when the moveable part is displaced the change of the magnetic field at the magnetic sensor is detectable by use of the magnetic sensor. Applications are the deflection detection of the cantilever of a scanning probe microscope or in a flying head of a storage device.
    • 公开了一种用于测量纳米尺度位移的磁感测单元。 为此,微型装置的可移动部件和固定部件包括具有磁场的磁性元件和磁性传感器。 磁性元件位于可动部件上,磁传感器位于固定部件上,或者磁性传感器位于可移动部件上,而磁性元件位于固定部件上,磁性传感器和/或磁性元件是一体的部分 的微型设备。 磁性元件和磁性传感器相对于彼此布置,使得当可移动部件移位时,通过使用磁性传感器可以检测磁性传感器处的磁场变化。 应用是扫描探针显微镜或存储装置的飞头中的悬臂的偏转检测。