会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • METHOD AND APPARATUS FOR FAST ELLIPTICAL ENCRYPTION WITH DIRECT EMBEDDING
    • 用于直接嵌入的快速ELLIPTICAL加密的方法和装置
    • WO99004531A1
    • 1999-01-28
    • PCT/US1998/014892
    • 1998-07-17
    • G09C1/00G06F7/72H04L9/30H04L9/32
    • G06F7/727G06F7/725H04L9/3066H04L9/3249
    • The present invention takes advantage of a quadratic-only ambiguity for x-coordinates in elliptic curve algebra as a means for encrypting plaintext directly onto elliptic curves. The encrypting of plaintext directly onto elliptic curves if refered to herein as "direct embedding". When performing direct embedding, actual plaintext is embedded as a "+" or "-" x-coordinate. The sender specifies using an extra bit whether + or - is used so that the receiver can decrypt appropriately. In operation their are two public initial x-coordinates such that two points P1 and P1 lie respectively on two curves E and E . A parcel of text xtext is selected that is no more than q bits in length. The curve (E or E ) that contains xtext is determined. A random number r is chosen and used to generate a coordinate x?q? using the public key of a receiving party. An elliptic add operation is used with the coordinate x?q? and the parcel of text to generate a message coordinate x?m?. A clue x?c? is generated using the random number and the point P from the appropriate curve E+/-. The sign that holds for xtext is determined and called g. The message coordinate m?m?, the clue x?c?, and the sign g are sent as a triple to the receiving party. The receiving party uses the clue x?c? and its private key to generate coordinate x?q?. Using the sign g and coordinate x?q?, the text can be recovered.
    • 本发明利用椭圆曲线代数中的x坐标的仅二次模糊度作为将明文直接加密到椭圆曲线上的手段。 如果这里被称为“直接嵌入”,则将明文直接加密到椭圆曲线上。 当执行直接嵌入时,实际明文被嵌入为“+”或“ - ”x坐标。 发件人指定使用额外的位,无论是使用+还是 - ,以便接收方可以正确解密。 在操作中,它们是两个公共初始x坐标,使得两个点P1 +和P1 < - >分别位于两条曲线E +和E - 上。 选择一个不超过q位长度的文本xtext。 确定包含xtext的曲线(E +或E - )。 随机数r被选择并用于生成坐标x?q? 使用接收方的公钥。 使用椭圆加法运算,坐标x?q? 和文本的文本生成消息坐标x?m?。 一个线索x?c? 是使用随机数和来自适当曲线E +/-的点P生成的。 确定xtext的符号,并称为g。 消息坐标m?m?,线索x?c?和符号g作为三位元发送给接收方。 接收方使用线索x?c? 及其私钥生成坐标x?q?。 使用符号g和坐标x?q?,可以恢复文本。
    • 5. 发明申请
    • METHOD AND APPARATUS FOR PUBLIC KEY EXCHANGE IN A CRYPTOGRAPHIC SYSTEM
    • 公共关键交换系统中的方法与装置
    • WO1993006672A1
    • 1993-04-01
    • PCT/US1992007864
    • 1992-09-16
    • NEXT COMPUTER, INC.
    • NEXT COMPUTER, INC.CRANDALL, Richard, E.
    • H04L09/06
    • H04L9/3066G06F7/725G06F7/727
    • The present invention is an elliptic curve cryptosystem (801, 802) that uses elliptic curves defined over finite fields, comprised of special classes of numbers. Special fast classes of numbers are used to optimize the modulo arithmetic required in the enciphering and deciphering process. The class of numbers used in the present invention is generally described by the form (901) 2q-C where C is an odd number and is relatively small, for example, no longer than the length of a computer word (16-32 bits). When a number is of this form (901), modulo arithmetic can be accomplished using shifts and adds only, eliminating the need for costly divisions. One subset of this fast class of numbers is known as 'Mersenne' primes, and are of the form 2q-1. Another class of numbers that can be used with the present invention are known as 'Fermat' numbers of the form 2q+1. The present invention provides a system (801, 802) whose level of security is tunable. q acts as an encryption bit depth parameter, such that larger values of q provide increased security. Inversion operations normally require an elliptic curve algebra can be avoided by selecting an inversionless parameterization of the elliptic curve (905). Fast Fourier transform for an FFT multiply mod operations optimized for efficient Mersenne arithmetic, allow the calculations of very large q to proceed more quickly than with other schemes.
    • 7. 发明申请
    • RING ARITHMETIC METHOD, SYSTEM, AND APPARATUS
    • 环算术方法,系统和设备
    • WO2002089399A1
    • 2002-11-07
    • PCT/US2002/013657
    • 2002-05-01
    • LAYER N NETWORKS, INC.MITCHELL, OscarDATTA, RajatSTEIN, KyleBLAKLEY, George
    • MITCHELL, OscarDATTA, RajatSTEIN, KyleBLAKLEY, George
    • H04L9/28
    • G06F7/72G01N2035/00247G01N2035/00574G06F7/723G06F7/727G06F7/728G06F13/1647G11C7/1066H04L9/302H04L47/125H04L63/0272H04L63/0428H04L63/166
    • A data encryption method performed with ring arithmetic operations using a residue number multiplication process wherein a first conversion to a first basis is done using a mixed radix system and a second conversion to a second basis is done using a mixed radix system. In some embodiments, a modulus C (96) is be chosen of the form 2 w - L, wherein C is a w-bit number and L is a low Hamming weight odd integer less than 2 (w-1)/2 . And in some of those embodiments, the residue mod C is calculated via several steps. P (98) is split into 2 w-bit words H 1 and L 1 (100). S 1 is calculated as equal to L 1 + (H 1 2 x1 ) + (H 1 2 x2 ) +...+ (H 1 2 xk ) + H 1 . S 1 is split into two w-bit words H 2 and L 2 . S 2 is computed as being equal to L 2 + (H 2 2 x1 ) + (H 2 2 x2 ) +...+ (H 2 2 xk ) + H 2 . S 3 is computed as being equal to S 2 + (2 x1 +...+ 2 xk + 1). And the residue is determined by comparing S 3 to 2 w . If S3 w , then the residue equals S 2 . If S 3 ≥ 2 w , then the residue equals S 3 - 2 w .
    • 利用残数乘法处理利用环算术运算执行的数据加密方法,其中使用混合基数系统完成到第一基础的第一转换,并且使用第二基础向第二基础转换到第二基础 混合基数系统。 在一些实施例中,模型C(96)被选择为形式2W-L,其中C是w位数并且L是小于2 (W-1)/ 2 。 并且在这些实施例中的一些中,通过多个步骤来计算残余mod C. P(98)被分成2个w位字H 1和L 1(100)。 S 1被计算为等于L 1 +1(H 1×2×1)+(H×1) 1×2×2)+ ... +(H 1×2×K)+ H 1×2 。 S 1被分成两个w位字H 2和L 2。 计算S 2 =等于L 2 +(H 2×2×1)+(H 2×2×2)+ ... +(H 2×2×k)+ H 2× >。 S 3被计算为等于S 2 +(2·x 1 + ... + 2·xk·+ 1)。 通过比较S 3到2 W来确定残余物。 如果S3 < 2 w,那么残基等于S 2。 如果S 3≥2W,那么残基等于S 3 -2 W
    • 9. 发明申请
    • HIGH-SPEED PARALLEL-PREFIX MODULO 2<n>-1 ADDERS
    • 高速并行前缀模块2 -1 ADDERS
    • WO02008885A1
    • 2002-01-31
    • PCT/US2001/022247
    • 2001-07-16
    • G06F7/50G06F7/508G06F7/72G06F7/38
    • G06F7/727G06F7/508G06F2207/5063
    • A parallel-prefix modulo 2 -1 adder (201) that is as fast as the fastest parallel prefix 2 integer adders, does not require an extra level of logic to generate the carry values, and has a very regular structure to which pipeline registers can easily be added. All nodes of the adder have a fanout n stages in the prefix structure. Each stage has n logical operators, and all of the logical operators in the prefix structure are of the same kind. Pipeline registers may be inserted before and/or after a stage in the prefix structure.
    • 与最快的并行前缀2 整数加法器一样快的并行前缀模2 n -1加法器(201)不需要额外级别的逻辑来生成进位值,并且具有非常规则 可以轻松添加流水线寄存器的结构。 在加法器的前缀结构(203)中,由并行前缀结构输出的每个进位值项由输入到加法器的操作数中的所有比特来确定。 在一个实施例中,在前缀结构中存在log2n阶段。 每个阶段都有n个逻辑运算符,前缀结构中的所有逻辑运算符都是相同的。 可以在前缀结构中的阶段之前和/或之后插入管道寄存器。
    • 10. 发明申请
    • COMPUTATION OF A MOD (2 N - 1)
    • MOD(2 N - 1)的计算
    • WO2008005592A1
    • 2008-01-10
    • PCT/US2007/064370
    • 2007-03-20
    • VIA TELECOM CO., LTD.SHEN, Qiang
    • SHEN, Qiang
    • G06F7/72
    • G06F7/727
    • A system and method for computing A mod (2 n -1), where A is an m bit quantity, where n is a positive integer, where m is greater than or equal to n. The quantity A may be partitioned into a plurality of sections, each being at most n bits long. The value A mod (2 n -1) may be computed by adding the sections in mod(2 n -1) fashion. This addition of the sections of A may be performed in a single clock cycle using an adder tree, or, sequentially in multiple clock cycles using a two-input adder circuit provided the output of the adder circuit is coupled to one of the two inputs. The computation A mod (2 n -1) may be performed as a part of an interleaving/deinterleaving operation, or, as part of an encryption/decryption operation.
    • 一种用于计算A mod(2-n-1)的系统和方法,其中A是m比特量,其中n是正整数,其中m大于或等于n。 数量A可以被划分成多个部分,每个部分最多n位长。 可以通过以mod(2-n -I-1)方式加上这些部分来计算值A mod(2≤n≤-1)。 可以使用加法器树在单个时钟周期中执行A的这些部分的添加,或者使用双输入加法器电路在多个时钟周期中顺序地执行,只要加法器电路的输出耦合到两个输入中的一个。 作为交织/解交织操作的一部分,或作为加密/解密操作的一部分,可以执行计算A mod(2-n-1)。