会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • DIAMOND SENSORS, DETECTORS, AND QUANTUM DEVICES
    • 钻石传感器,探测器和量子设备
    • WO2012152617A1
    • 2012-11-15
    • PCT/EP2012/057960
    • 2012-05-01
    • ELEMENT SIX LIMITEDTWITCHEN, Daniel JamesMARKHAM, Matthew LeeSCARSBROOK, Geoffrey Alan
    • TWITCHEN, Daniel JamesMARKHAM, Matthew LeeSCARSBROOK, Geoffrey Alan
    • C30B25/02C30B29/04C30B31/22C30B33/00G06N99/00
    • C30B29/04C30B25/02C30B31/22C30B33/00G06N99/002
    • A synthetic single crystal diamond material comprising: a first region of synthetic single crystal diamond material comprising a plurality of electron donor defects; a second region of synthetic single crystal diamond material comprising a plurality of quantum spin defects; and a third region of synthetic single crystal diamond material disposed between the first and second regions such that the first and second regions are spaced apart by the third region, wherein the second and third regions of synthetic single crystal diamond material have a lower concentration of electron donor defects than the first region of synthetic single crystal diamond material, and wherein the first and second regions are spaced apart by a distance in a range 10 nm to 100 μιη which is sufficiently close to allow electrons to be donated from the first region of synthetic single crystal diamond material to the second region of synthetic single crystal diamond material thus forming negatively charged quantum spin defects in the second region of synthetic single crystal diamond material and positively charged defects in the first region of synthetic single crystal diamond material while being sufficiently far apart to reduce other coupling interactions between the first and second regions which would otherwise unduly reduce the decoherence time of the plurality of quantum spin defects and/or produce strain broaden of a spectral line width of the plurality of quantum spin defects in the second region of synthetic single crystal diamond material.
    • 一种合成单晶金刚石材料,包括:合成单晶金刚石材料的第一区域,其包含多个电子供体缺陷; 包括多个量子自旋缺陷的合成单晶金刚石材料的第二区域; 以及设置在第一和第二区域之间的合成单晶金刚石材料的第三区域,使得第一和第二区域被第三区域间隔开,其中合成单晶金刚石材料的第二和第三区域具有较低的电子浓度 施主缺陷比合成单晶金刚石材料的第一区域,并且其中第一和第二区域间隔开10nm至100μΩ的范围内的距离 其足够接近以允许将电子从合成单晶金刚石材料的第一区域捐赠到合成单晶金刚石材料的第二区域,从而在合成单晶金刚石材料的第二区域中形成带负电荷的量子自旋缺陷并带正电荷 合成单晶金刚石材料的第一区域中的缺陷,同时足够远以减少第一和第二区域之间的其它耦合相互作用,否则会过度地减少多个量子自旋缺陷的去相干时间和/或产生应变扩展 在合成单晶金刚石材料的第二区域中的多个量子自旋缺陷的谱线宽度。
    • 2. 发明申请
    • CONTROLLING DOPING OF SYNTHETIC DIAMOND MATERIAL
    • 控制合成金刚石材料的掺杂
    • WO2012084656A1
    • 2012-06-28
    • PCT/EP2011/072820
    • 2011-12-14
    • ELEMENT SIX LIMITEDCOE, Steven EdwardWILMAN, Jonathan JamesTWITCHEN, Daniel JamesSCARSBROOK, Geoffrey AlanBRANDON, John RobertWORT, Christopher John HowardMARKHAM, Matthew Lee
    • COE, Steven EdwardWILMAN, Jonathan JamesTWITCHEN, Daniel JamesSCARSBROOK, Geoffrey AlanBRANDON, John RobertWORT, Christopher John HowardMARKHAM, Matthew Lee
    • H01J37/32C30B29/04
    • C30B25/14C01B32/25C23C16/274C23C16/278C30B25/02C30B25/165C30B29/04H01J37/32192H01J37/32449
    • A method of manufacturing synthetic CVD diamond material, the method comprising: providing a microwave plasma reactor comprising: a plasma chamber; one or more substrates disposed in the plasma chamber providing a growth surface area over which the synthetic CVD diamond material is to be deposited in use; a microwave coupling configuration for feeding microwaves from a microwave generator into the plasma chamber; and a gas flow system for feeding process gases into the plasma chamber and removing them therefrom, injecting process gases into the plasma chamber; feeding microwaves from the microwave generator into the plasma chamber through the microwave coupling configuration to form a plasma above the growth surface area; and growing synthetic CVD diamond material over the growth surface area, wherein the process gases comprise at least one dopant in gaseous form, selected from a one or more of boron, silicon, sulphur, phosphorous, lithium and beryllium at a concentration equal to or greater than 0.01 ppm and/or nitrogen at a concentration equal to or greater than 0.3 ppm, wherein the gas flow system includes a gas inlet comprising one or more gas inlet nozzles disposed opposite the growth surface area and configured to inject process gases towards the growth surface area, and wherein the process gases are injected towards the growth surface area at a total gas flow rate equal to or greater than 500 standard cm 3 per minute and/or wherein the process gases are injected into the plasma chamber through the or each gas inlet nozzle with a Reynolds number a Reynolds number in a range 1 to 100.
    • 一种制造合成CVD金刚石材料的方法,所述方法包括:提供微波等离子体反应器,包括:等离子体室; 设置在等离子体室中的一个或多个衬底提供在使用中沉积合成CVD金刚石材料的生长表面区域; 用于将微波从微波发生器馈入等离子体室的微波耦合配置; 以及用于将工艺气体进料到等离子体室中并将其从其中除去的气体流系统,将工艺气体注入到等离子体室中; 通过微波耦合配置将微波从微波发生器馈送到等离子体室中,以在生长表面积之上形成等离子体; 以及在所述生长表面积上生长的合成CVD金刚石材料,其中所述工艺气体包含至少一种气体形式的掺杂剂,其选自硼,硅,硫,磷,锂和铍中的一种或多种,​​其浓度等于或大于 处于浓度等于或大于0.3ppm的0.01ppm和/或氮气,其中所述气体流动系统包括气体入口,所述气体入口包括与生长表面区域相对设置的一个或多个气体入口喷嘴,并且被配置为朝着生长表面注入工艺气体 并且其中所述工艺气体以等于或大于500标准立方厘米/分钟的总气体流速向所述生长表面区域注入,和/或其中所述工艺气体通过所述或每个气体入口喷嘴注入所述等离子体室 雷诺数雷诺数在1到100之间。
    • 3. 发明申请
    • QUANTUM PROCESSING DEVICE
    • 量子处理装置
    • WO2013053911A1
    • 2013-04-18
    • PCT/EP2012/070309
    • 2012-10-12
    • ELEMENT SIX LIMITED
    • HANSON, RonaldBERNIEN, HannesMARKHAM, Matthew LeeTWITCHEN, Daniel James
    • G06N99/00B82Y10/00B82Y20/00G02B6/00H01L29/66
    • G02F3/00B82Y10/00B82Y20/00G02B6/00G06N99/002H01L29/127H01L29/66977H01L29/66984
    • A device for achieving multi-photon interference, said device comprising: at least two solid state photon emitters, each solid state photon emitter comprising nuclear and electron spin states coupled together, each solid state photon emitter being configured to produce photon emission comprising a photon emission peak, wherein the photon emission peaks from different solid state photon emitters have a first frequency difference between peak intensities, and wherein the electron spin states of each solid state photon emitter are resolvable; an excitation arrangement configured to individually address the at least two solid state photon emitters; a plurality of optical out coupling structures wherein each solid state photon emitter is provided with an associated optical out coupling structure; a tuning arrangement configured to reduce the first frequency difference between the peak intensities of the photon emission peaks from the at least two solid state photon emitters to a second frequency difference which is smaller than the first frequency difference; a photon interference arrangement configured to overlap photon emissions from the at least two solid state emitters after tuning; and a detector arrangement configured to detect photon emissions from the at least two solid state emitters after tuning and passing through the photon interference arrangement, wherein the detector arrangement is configured to resolve sufficiently small differences in photon detection times that tuned photon emissions from the at least two solid state emitters are quantum mechanically indistinguishable resulting in quantum interference between indistinguishable photon emissions from different solid state photon emitters.
    • 用于实现多光子干扰的装置,所述装置包括:至少两个固态光子发射器,每个固态光子发射器包括耦合在一起的核和电子自旋状态,每个固态光子发射器被配置为产生包括光子发射的光子发射 峰值,其中来自不同固态光子发射器的光子发射峰值具有峰值强度之间的第一频率差,并且其中每个固态光子发射器的电子自旋状态是可分辨的; 激励装置,被配置为单独地寻址所述至少两个固态光子发射器; 多个光学输出耦合结构,其中每个固态光子发射器设置有相关联的光耦合结构; 调谐装置,被配置为将来自所述至少两个固态光子发射器的所述光子发射峰的峰值强度之间的第一频率差减小到小于所述第一频率差的第二频率差; 配置为在调谐之后与来自所述至少两个固态发射器的光子发射重叠的光子干涉装置; 以及检测器装置,被配置为在调谐和通过光子干涉装置之后检测来自所述至少两个固态发射器的光子发射,其中所述检测器装置被配置为解决光子检测时间中足够小的差异, 两个固态发射体是量子力学上不可区分的,导致来自不同固态光子发射体的不可区分的光子发射之间的量子干涉。
    • 9. 发明申请
    • SINGLE CRYSTAL CVD SYNTHETIC DIAMOND MATERIAL
    • 单晶CVD合成金刚石材料
    • WO2013087697A1
    • 2013-06-20
    • PCT/EP2012/075237
    • 2012-12-12
    • ELEMENT SIX LIMITED
    • DHILLON, Harpreet KaurTWITCHEN, Daniel JamesKHAN, Rizwan Uddin Ahmad
    • C30B25/10C30B25/16C30B25/20C30B29/04
    • C30B29/04C30B21/02C30B21/04C30B25/10C30B25/16C30B25/20
    • A single crystal CVD synthetic diamond material comprising: a total as-grown nitrogen concentration equal to or greater than 5 ppm, and a uniform distribution of defects, wherein said uniform distribution of defects is defined by one or more of the following characteristics: (i) the total nitrogen concentration, when mapped by secondary ion mass spectrometry (SIMS) over an area equal to or greater than 50 x 50 μm using an analysis area of 10 μm or less, possesses a point-to-point variation of less than 30% of an average total nitrogen concentration value, or when mapped by SIMS over an area equal to or greater than 200 x 200 μm using an analysis area of 60 μιη or less, possesses a point-to-point variation of less than 30% of an average total nitrogen concentration value; (ii) an as-grown nitrogen-vacancy defect (NV) concentration equal to or greater than 50 ppb as measured using 77K UV-visible absorption measurements, wherein the nitrogen-vacancy defects are uniformly distributed through the synthetic single crystal CVD diamond material such that, when excited using a 514 nm laser excitation source of spot size equal to or less than 10 μιη at room temperature using a 50 mW continuous wave laser, and mapped over an area equal to or greater than 50 x 50 μm with a data interval less than 10 μιη, there is a low point-to-point variation wherein the intensity area ratio of nitrogen vacancy photoluminescence peaks between regions of high photoluminescent intensity and regions of low photolominescent intensity is 0 ) or the 637 nm photoluminescent peak (NV); (iii) a variation in Raman intensity such that, when excited using a 514 nm laser excitation source (resulting in a Raman peak at 552.4 nm) of spot size equal to or less than 10 μm at room temperature using a 50 mW continuous wave laser, and mapped over an area equal to or greater than 50 x 50 μm with a data interval less than 10 μm, there is a low point-to-point variation wherein the ratio of Raman peak areas between regions of low Raman intensity and high Raman intensity is 0 greater than 120 times a Raman intensity at 552.4 nm, and/or an intensity at 637 nm corresponding to NV - greater than 200 times the Raman intensity at 552.4 nm; (v) a single substitutional nitrogen defect (N s ) concentration equal to or greater than 5 ppm, wherein the single substitutional nitrogen defects are uniformly distributed through the synthetic single crystal CVD diamond material such that by using a 1344 cm -1 infrared absorption feature and sampling an area greater than an area of 0.5 mm 2 , the variation is lower than 80%, as deduced by dividing the standard deviation by the mean value; (vi) a variation in red luminescence intensity, as defined by a standard deviation divided by a mean value, is less than 15%; (vii) a mean standard deviation in neutral single substitutional nitrogen concentration of less than 80%; and (viii) a colour intensity as measured using a histogram from a microscopy image with a mean gray value of greater than 50, wherein the colour intensity is uniform through the single crystal CVD synthetic diamond material such that the variation in gray colour, as characterised by the gray value standard deviation divided by the gray value mean, is less than 40%.
    • 一种单晶CVD合成金刚石材料,包括:等于或大于5ppm的总生长氮浓度和均匀分布的缺陷,其中所述均匀分布的缺陷由以下一个或多个特征定义:(i )当使用10mum以下的分析面积在等于或大于50×50μm的区域上通过二次离子质谱法(SIMS)进行映射时,总氮浓度具有小于30的点对点变化 平均总氮浓度值的百分比,或者当使用分析面积为60μm或以下的分析区域在SIMS对等于或大于200×200μm的区域进行映射时,具有小于30% 平均总氮浓度值; (ii)使用77K紫外 - 可见吸收测量测量的等于或大于50ppb的生长氮空位缺陷(NV)浓度,其中氮空位缺陷通过合成单晶CVD金刚石材料均匀分布,例如 当使用50mW连续波激光器在室温下使用等于或小于10μaeta的光斑尺寸的514nm激光源进行激发时,使用数据间隔映射到等于或大于50×50um的区域 低于10个多孔,存在低点对点变化,其中高光致发光强度区域和低光致发光强度区域之间的氮空位光致发光峰的强度面积比对于575nm光致发光峰(NV0)为<2x, 或637nm光致发光峰(NV); (iii)拉曼强度的变化,使得当使用50mW连续波激光器在室温下使用514nm激光源(在552.4nm的拉曼峰值)激发等于或小于10μm的光斑尺寸时, ,并且以小于10um的数据间隔映射到等于或大于50×50um的区域,存在低点对点变化,其中低拉曼强度区域与高拉曼区域之间的拉曼峰面积比 强度<1.25倍; (iv)使用77K紫外 - 可见吸收测量测量的等于或大于50ppb的生长氮空位缺陷(NV)浓度,其中当使用等于或小于等于或等于 使用50mW的连续波激光器在77K下使用10Km的激光,给出对应于NV0的575nm处的强度,大于在552.4nm的拉曼强度的120倍,和/或对应于NV-的637nm的强度大于拉曼的200倍 552.4nm处的强度; (v)等于或大于5ppm的单一替代氮缺陷(Ns)浓度,其中单个取代氮缺陷通过合成单晶CVD金刚石材料均匀分布,使得通过使用1344cm -1的红外吸收特征和 采样面积大于0.5平方毫米的面积,变化小于80%,通过将标准差除以平均值推导出来; (vi)由标准偏差除以平均值定义的红色发光强度的变化小于15%; (vii)中性单取代氮浓度的平均标准偏差小于80%; 和(viii)使用平均灰度值大于50的显微镜图像的直方图测量的颜色强度,其中通过单晶CVD合成金刚石材料的颜色强度是均匀的,使得灰色的变化如表征 通过灰度值标准差除以灰度值平均值,小于40%。