会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • PERCEPTUALLY DRIVEN ERROR CORRECTION FOR VIDEO TRANSMISSION
    • 明显地驱动视频传输的错误修正
    • WO2014049319A1
    • 2014-04-03
    • PCT/GB2013/000409
    • 2013-09-27
    • BRITISH TELECOMMUNICATIONS PUBLIC LIMITED COMPANY
    • DAVIS, Andrew Gordon
    • H04N7/26
    • H04N19/89H04N19/115H04N19/117H04N19/154H04N19/157H04N19/174H04N19/188H04N19/67
    • The invention presents a method of applying forward error correction selectively to an encoded video sequence before it is transmitted. Forward error correction is targeted at portions of the video that will be most noticeably affected by any potential packet loss during transmission. The targeting is done using a perceptual error sensitivity model, which effectively maps an error visibility rating onto content-dependent and content-independent properties associated with a given portion video. The encoder and decoder settings will be used for the actual video sequence where forward error correction is to be applied are used in the training of the model, as they have a significant effect on the perception of any errors. Then, to adaptively apply forward error correction, a selected video sequence is encoded, and the encoded bitstream is analysed to determine content-independent properties. A decoded version of the video sequence is also analysed to determine content-dependent properties being determined. The content-independent and content-dependent properties are used in conjunction with the perceptual error sensitivity model to predict which slices of the video sequence will be most significantly affected perceptually by packet loss, and thus target FEC to those areas accordingly.
    • 本发明提供一种在被发送之前对编码视频序列选择性地应用前向纠错的方法。 前向纠错是针对视频的部分,在传输过程中任何潜在的数据包丢失将最为显着的影响。 使用感知错误敏感性模型完成定位,这可以将错误可见性评级有效地映射到与给定部分视频相关联的依赖于内容和与内容无关的属性。 编码器和解码器设置将用于实际的视频序列,其中应用前向纠错是用于训练模型,因为它们对任何错误的感知具有显着影响。 然后,为了自适应地应用前向纠错,对所选择的视频序列进行编码,分析编码比特流以确定与内容无关的属性。 还分析视频序列的解码版本,以确定正在确定的内容相关属性。 与内容无关和依赖内容的属性与感知错误灵敏度模型结合使用,以预测视频序列的哪些片段将受到包丢失感知最大程度的影响,从而相应地将这些区域对准FEC。