会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • DIAMOND ELECTRODES FOR ELECTROCHEMICAL DEVICES
    • 电化学设备用金刚石电极
    • WO2012034925A8
    • 2013-06-06
    • PCT/EP2011065574
    • 2011-09-08
    • ELEMENT SIX LTDMOLLART TIMOTHY PETERBRANDON JOHN ROBERTWILMAN JONATHAN JAMES
    • MOLLART TIMOTHY PETERBRANDON JOHN ROBERTWILMAN JONATHAN JAMES
    • C25B11/12C02F1/461C25B11/03
    • C02F1/46109C02F1/4672C02F2001/46133C02F2001/46152C02F2201/46105C23C16/28C23C16/56C25B11/03C25B11/12C25D17/10
    • A bulk boron doped diamond electrode comprising a plurality of grooves disposed in a surface of the bulk boron doped diamond electrode. The bulk boron doped diamond electrode is formed by growing a bulk boron doped diamond electrode using a chemical vapour deposition technique and forming a plurality of grooves in a surface of the bulk boron doped diamond electrode. According to one arrangement, the plurality of grooves are formed by forming a pattern of carbon solvent metal over a surface of the bulk boron doped diamond electrode and heating whereby the carbon solvent metal dissolves underlying diamond to form grooves in the surface of the bulk boron doped electrode. The invention also relates to an electrochemical cell comprising one or more grooved bulk boron doped diamond electrodes. The or each bulk boron doped diamond electrode is oriented within the electrochemical device such that the grooves are aligned in a direction substantially parallel to a direction of electrolyte flow.
    • 一种体积硼掺杂的金刚石电极,其包括设置在体积掺杂硼的金刚石电极的表面中的多个凹槽。 通过使用化学气相沉积技术生长体积掺杂硼的金刚石电极并在体积硼掺杂的金刚石电极的表面中形成多个凹槽来形成体积掺杂硼的金刚石电极。 根据一种布置,通过在体积硼掺杂的金刚石电极的表面上形成碳溶剂金属的图案并加热形成多个凹槽,由此碳溶剂金属溶解下面的金刚石以在体积硼掺杂的表面中形成凹槽 电极。 本发明还涉及一种电化学电池,其包括一个或多个带槽的体积硼掺杂金刚石电极。 所述或每个体积硼掺杂的金刚石电极在所述电化学装置内取向,使得所述凹槽在基本上平行于电解质流动方向的方向上排列。
    • 3. 发明申请
    • ELECTROCHEMICAL SENSOR WITH DIAMOND ELECTRODES
    • 带金刚石电极的电化学传感器
    • WO2012156203A1
    • 2012-11-22
    • PCT/EP2012/058038
    • 2012-05-02
    • ELEMENT SIX LIMITEDNEWTON, Mark EdwardMACPHERSON, Julie VictoriaHUTTON, Laura AnneMOLLART, Timothy PeterSCARSBROOK, Geoffrey Alan
    • NEWTON, Mark EdwardMACPHERSON, Julie VictoriaHUTTON, Laura AnneMOLLART, Timothy PeterSCARSBROOK, Geoffrey Alan
    • G01N23/223G01N27/42G01N27/48
    • G01N27/4163G01N21/75G01N27/308G01N27/48
    • An electrochemical sensor comprising: a reference electrode (4) formed of an electrically conductive synthetic doped diamond material and configured to be located in electrical contact with a solution (8) to be analysed; a sensing electrode (2) formed of an electrically conductive synthetic doped diamond material and configured to be located in contact with the solution (8) to be analysed; an electrical controller (10) configured to conduct stripping voltammetric measurements by applying a voltage to the sensing electrode (2), to change the applied voltage relative to the reference electrode (4), and to measure an electric current flowing through the sensing electrode (2) thereby generating voltammetry data; and a calibration system configured to provide an in- situ calibration for providing a reference point in the voltammetric data since the potential of the diamond reference electrode is non fixed and floating. Consequently, assigning of peaks (M1, M2, M3) in the voltammetry data to chemical species (M1, M2, M3) is possible, thereby allowing the type and concentration of chemical species in the solution (8) to be determined. The in-situ calibration consists of: 1 - using a spectrometer for X-rays, Gamma rays or fluorescence measurements integrated in the sensor, 2 - using a known redox couple added to the solution that will provide a reference peak in the voltammetric data, or 3 - producing in-situ ionic species at the vicinity of the reference electrode.
    • 一种电化学传感器,包括:由导电合成掺杂金刚石材料形成并被配置为与要分析的溶液(8)电接触的参考电极(4); 感测电极(2),由导电合成掺杂的金刚石材料形成,并被配置为与要分析的溶液(8)接触; 电气控制器(10),被配置为通过向感测电极(2)施加电压来进行溶出伏安测量,以改变施加的电压相对于参考电极(4),并测量流过感测电极的电流( 2)由此产生伏安数据; 以及校准系统,其被配置为提供在伏安数据中提供参考点的原位校准,因为金刚石参考电极的电位是非固定和浮动的。 因此,将伏安数据中的峰(M1,M2,M3)分配到化学物质(M1,M2,M3)是可能的,从而允许确定溶液(8)中化学物质的类型和浓度。 原位校准包括:1 - 使用光谱仪进行X射线,伽马射线或集成在传感器中的荧光测量,2 - 使用加到溶液中的已知氧化还原对,其将在伏安数据中提供参考峰, 或3-在参比电极附近产生原位离子物质。