会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • METHOD OF JOINING OR REPAIRING SUPERALLOY STRUCTURES USING PROJECTION RESISTANCE BRAZING : CORRESPONDING SUPERALLOY COMPONENT
    • 使用防弹电阻接合或修复超级结构的方法:相应的超级组件
    • WO2013070573A1
    • 2013-05-16
    • PCT/US2012/063658
    • 2012-11-06
    • SIEMENS ENERGY, INC.BRUCK, Gerald J.
    • BRUCK, Gerald J.
    • B23K1/00F01D5/00B23P6/00
    • B23K1/0004B23K1/0018B23K11/00B23K11/002B23K11/004B23K11/14B23K2201/001B23K2201/08B23P6/005F01D5/005Y10T428/12451
    • Superalloy components (40, 50) are joined by mating a recess (44) formed in one component (40) with a corresponding projection (52) formed in another component (50) along a contact surface. The components are compressed along the contact surface and resistance heat brazed to each other. Current is passed between the components (40, 50) at a selected flow rate and application time until brazing alloy (60) melting occurs along the contact surface, and they are mutually affixed to each other. When repairing a damaged surface portion of a superalloy material component (40), the damaged portion is removed to form an excavated recess (44). A repair splice (50) is formed, preferably of a same material with similar mechanical structural properties, having a mating projection (52) with profile conforming to the corresponding recess (44) profile. The splice (52) and substrate (40, 50) are resistance heat brazed under compression pressure until brazing alloy (60) melting occurs along the contact surface, so that they are mutually affixed.
    • 通过将形成在一个部件(40)中的凹部(44)与沿着接触表面形成在另一部件(50)中的对应突起(52)配合来将超合金部件(40,50)接合。 这些部件沿着接触表面被压缩,并且电阻热量相互钎焊。 电流以选定的流量和施加时间在组分(40,50)之间通过,直到钎焊合金(60)熔融沿着接触表面发生,并且它们彼此相互固定。 当修复超合金材料部件(40)的损坏的表面部分时,损坏的部分被移除以形成挖掘的凹部(44)。 形成具有类似机械结构特性的相同材料的修补接头(50),其具有符合相应凹部(44)轮廓的轮廓的配合突出部(52)。 接头(52)和基板(40,50)是在压缩压力下钎焊的电阻热,直到钎焊合金(60)熔融沿着接触表面发生,使得它们相互固定。
    • 3. 发明申请
    • LASER CLADDING SYSTEM FILLER MATERIAL DISTRIBUTION APPARATUS
    • 激光切割系统填充材料分配设备
    • WO2014074188A1
    • 2014-05-15
    • PCT/US2013/054453
    • 2013-08-12
    • SIEMENS ENERGY, INC.BRUCK, Gerald J.
    • BRUCK, Gerald J.
    • B23K26/03B23K26/34B05B7/22C23C24/10
    • C23C24/106B23K26/082B23K26/32B23K26/34B23K26/342B23K35/0255B23K35/0261B23K35/0272B23K2201/001B23K2201/34B23K2203/08B23K2203/18B23K2203/26C23C24/08
    • Laser cladding filler material is introduced in a pattern on a on a substrate (200) by a filler distribution apparatus (300) having a linear or polygonal array of dispensing apertures (331-336) for uniform distribution in advance of or during a laser beam (180) transferring optical energy to the substrate (200). The distribution apparatus (300) includes a housing (310) (or assembly of coupled housings) that defines the distribution aperture array (331-336) and an internal chamber (320) in communication with the apertures (331-336) that is adapted for retention of filler material (F). A mechanical feed mechanism, such as an auger (340), is adapted for feeding filler material (F) from the internal chamber (320) through the distribution apertures (331-336). A feed mechanism drive system (135) is coupled to the mechanical feed mechanism (340), adapted for selectively varying filler material feed rate. The distribution aperture array (331-336) may be selectively reconfigured to vary selectively the filler material distribution pattern.
    • 通过具有线性或多边形阵列的分配孔(331-336)的填充物分配装置(300)将激光熔覆填充材料以图案形式引入到衬底(200)上,用于在激光束之前或期间均匀分布 (180)将光能传递到所述衬底(200)。 分配装置(300)包括限定分配孔阵列(331-336)的壳体(或耦合壳体的组件)和与孔(331-336)连通的内部腔室(320),其适于 用于保留填料(F)。 诸如螺旋推运器(340)的机械进给机构适于通过分配孔(331-336)从内室(320)输送填料(F)。 进给机构驱动系统(135)联接到机械进给机构(340),适于选择性地改变填充材料进给速率。 可以选择性地重新配置分配孔阵列(331-336)以选择性地改变填充材料分布模式。
    • 4. 发明申请
    • SUPERALLOY COMPONENT AND ELECTROSLAG AND ELECTROGAS REPAIR OF SUPERALLOY COMPONENTS
    • 超级组件和电焊机和电焊机维修超级组件
    • WO2014025489A1
    • 2014-02-13
    • PCT/US2013/050255
    • 2013-07-12
    • SIEMENS ENERGY, INC.BRUCK, Gerald J.
    • BRUCK, Gerald J.
    • B23K25/00B23K9/04B23P6/00F01D5/00B23K9/038B22D19/10
    • B22D19/10B23K9/038B23K9/042B23K25/005B23K2201/001B23P6/007F01D5/005F05D2230/80F05D2300/175Y10T428/12986
    • Superalloy component castings, such as turbine blades and vanes, are fabricated or repaired by an electroslag or electrogas welding process that at least partially replicates the crystal structure of the original cast substrate in a cast-in-place substrate extension. The process re- melts the base substrate surface and grows it with new molten filler material. As the base substrate (20) and the filler material (44, 45, 46) solidify, the newly formed "re-cast" component has a directionally solidified uniaxial substrate extension portion (50) that at least in part replicates the crystalline structure of the base substrate (20). The "re-cast" component can be fabricated with a unified single crystal structure, including the extension portion. In other applications, a substrate extension can replicate a directionally solidified uniaxial crystal structure of an original base substrate casting. Polycrystalline substrate base structures can be re-cast with a substrate extension that replicates base substrate crystals that are most parallel to the uniaxial casting direction.
    • 超合金部件铸件(例如涡轮机叶片和叶片)通过电渣或电焊工艺制造或修理,该工艺至少部分地复制现浇衬底延伸部分中的原始铸造衬底的晶体结构。 该工艺使基底表面复原,并用新的熔融填料生长。 随着基底(20)和填充材料(44,45,46)的固化,新形成的“再铸造”组件具有定向凝固的单轴衬底延伸部分(50),其至少部分地复制了 基底(20)。 “重铸”部件可以用统一的单晶结构制造,包括延伸部分。 在其他应用中,基底延伸可以复制原始基底基底铸造的定向凝固的单轴晶体结构。 多晶基材基体结构可以用基板延伸部进行再铸造,所述基板延伸部分复制最平行于单轴铸造方向的基底晶体。
    • 7. 发明申请
    • METHOD FOR AUTOMATED SUPERALLOY LASER CLADDING WITH 3D IMAGING WELD PATH CONTROL
    • 用于3D成像焊接路径控制的自动超级激光切割方法
    • WO2014042970A1
    • 2014-03-20
    • PCT/US2013/058368
    • 2013-09-06
    • SIEMENS ENERGY, INC.BRUCK, Gerald J.KAMEL, Ahmed
    • BRUCK, Gerald J.KAMEL, Ahmed
    • B23K26/03B23K26/34
    • B23K26/08B23K26/032B23K26/0626B23K26/32B23K26/34B23K26/342B23K31/125B23K35/0244B23K35/0255B23K35/36B23K2201/001B23K2203/26F01D5/005
    • Superalloy components (20), such as service-degraded turbine blades and vanes, are clad by laser beam welding. The welding/cladding path, including cladding application profile, is determined by prior, preferably real time, non-contact 3D dimensional scanning of the component (20) and comparison of the acquired dimensional scan data with specification dimensional data for the component (20). A welding path (21) for cladding the scanned component (20) to conform its dimensions to the specification dimensional data is determined. The laser welding apparatus (60), preferably in cooperation with a cladding filler material distribution apparatus (70), executes the welding path (21) to apply the desired cladding profile. In some embodiments a post-weld non-contact 3D dimensional scan of the welded component is performed and the post- weld scan dimensional data are compared with the specification dimensional data. Preferably the welding path (21)and/or cladding profile application are modified in a feedback loop with the pre- and/or post- welding 3D dimensional scanning.
    • 超级合金部件(20),例如维修劣化的涡轮叶片和叶片,通过激光束焊接包层。 焊接/包层路径,包括覆层应用轮廓,由组件(20)的先前优选实时非接触3D维扫描确定,并且所获取的维度扫描数据与部件(20)的规格尺寸数据进行比较, 。 确定用于将扫描部件(20)包围以使其尺寸符合规格尺寸数据的焊接路径(21)。 激光焊接装置(60)优选地与包层填充材料分配装置(70)协作,执行焊接路径(21)以施加期望的包层分布。 在一些实施例中,执行焊接部件的焊接后非接触3D维度扫描,并将焊后扫描尺寸数据与规格尺寸数据进行比较。 优选地,焊接路径(21)和/或包层轮廓应用在具有预焊接和/或焊后3D三维扫描的反馈回路中被修改。
    • 8. 发明申请
    • AUTOMATED SUPERALLOY LASER CLADDING SYSTEM WITH 3D IMAGING WELD PATH CONTROL
    • 具有三维成像焊接路径控制的自动超级激光打标系统
    • WO2014042938A1
    • 2014-03-20
    • PCT/US2013/058139
    • 2013-09-05
    • SIEMENS ENERGY, INC.BRUCK, Gerald J.KAMEL, Ahmed
    • BRUCK, Gerald J.KAMEL, Ahmed
    • B23K26/34B23K26/30B23K26/08B23K26/06B23K20/00
    • B23K26/342B23K26/082B23K26/34B23K35/0244B23K2201/001B23P6/007F01D5/28F01D5/286F01D5/288
    • Superalloy components, such as service degraded turbine blades and vanes, are clad by laser beam welding. The welding/cladding path, including cladding application profile, is determined by prior, preferably real time, non-contact 3D dimensional scanning of the component and comparison of the acquired dimensional scan data with specification dimensional data for the component. A welding path for cladding the scanned component to conform its dimensions to the specification dimensional data is determined. The laser welding apparatus, preferably in cooperation with a cladding filler material distribution apparatus, executes the welding path to apply the desired cladding profile. In some embodiments a post-weld non-contact 3D dimensional scan of the welded component is performed and the post-weld scan dimensional data are compared with the specification dimensional data. Preferably the welding path and/or cladding profile application are modified in a feedback loop with the pre- and/or post-welding 3D dimensional scanning.
    • 超合金部件,如服务劣化的涡轮叶片和叶片,通过激光束焊接包层。 焊接/包层路径,包括覆层应用轮廓,由组件的先前优选实时非接触3D维扫描确定,并将所获取的维度扫描数据与部件的规格尺寸数据进行比较。 确定用于将扫描的部件包围以使其尺寸符合规格尺寸数据的焊接路径。 激光焊接装置,优选地与包层填充材料分配装置协作,执行焊接路径以施加期望的包层分布。 在一些实施例中,执行焊接部件的焊后非接触3D维度扫描,并将焊接后扫描尺寸数据与规格尺寸数据进行比较。 优选地,焊接路径和/或包层轮廓应用在具有预焊接和/或焊后3D三维扫描的反馈回路中被修改。
    • 9. 发明申请
    • EVALUATING A PROCESS EFFECT OF SURFACE PRESENTATION ANGLE
    • 评估表面呈现角度的过程效应
    • WO2013170253A1
    • 2013-11-14
    • PCT/US2013/040756
    • 2013-05-13
    • SIEMENS ENERGY, INC.BRUCK, Gerald J.SHINN, Brandon W.KAMEL, Ahmed
    • BRUCK, Gerald J.SHINN, Brandon W.KAMEL, Ahmed
    • B23K31/12B23K37/04G01N3/58
    • G01N33/00B23K31/12B23K37/0408B23K37/0452G01N3/58
    • An apparatus (10) and method for evaluating an effect of a surface presentation angle (A). The apparatus supports a plurality of samples (12) separated by support plates (18) between end plates (22) in a shish kebab arrangement. A groove (34) is formed on each side of each support plate for receiving an edge of each respective sample at a different angle relative to an axis of impingement (32). A clamping mechanism (20) holds the end plates, support plates and samples together in the fixed orientation exposing each sample surface at a different presentation angle, yet at the same distance from a process end effector (30). The sample impingement surfaces are exposed to the process, and the effect of the different surface presentation angles is determined from the samples. Process variables to counter the effects of surface presentation angle may be identified and controlled.
    • 一种用于评估表面呈现角(A)的影响的装置(10)和方法。 该设备支持多个样品(12),该样品(12)以排列的烤肉串布置在端板(22)之间由支撑板(18)隔开。 在每个支撑板的每一侧上形成一个槽(34),用于以相对于冲击轴线(32)的不同角度接收每个相应样品的边缘。 夹持机构(20)以固定的方式将端板,支撑板和样品保持在一起,以与处理端部执行器(30)相同的距离以不同的呈现角度暴露每个样品表面。 样品冲击表面暴露于该过程,并且从样品确定不同表面呈现角度的影响。 可以识别和控制用于对抗表面呈现角度影响的过程变量。
    • 10. 发明申请
    • METHOD FOR RESISTANCE BRAZING
    • 电阻法制作方法
    • WO2013148386A1
    • 2013-10-03
    • PCT/US2013/032747
    • 2013-03-18
    • SIEMENS ENERGY, INC.SANSOM, David G.BRUCK, Gerald J.
    • SANSOM, David G.BRUCK, Gerald J.
    • B23K1/00B23K1/008
    • B23K1/0004B23K1/0018B23K1/008Y10T428/12986
    • Metallic components, including superalloy components such as turbine vanes and blades, are joined or repaired by electric resistance with a high electrical resistivity brazing alloy composition. In some embodiments the brazing alloy comprises filler metal selected from the group consisting of nickel, iron, and cobalt base alloy and elements selected from the group consisting of phosphorous (P), boron (B), silicon (Si), germanium (Ge), sulfur (S), selenium (Se), carbon (C), tellurium (Te) and manganese (Mn). In performing the method of the present invention a high electrical resistivity brazing alloy composition is introduced within a substrate defect or interposed between two substrates that are to be joined. An electric current is passed through the brazing alloy until the alloy melts and bonds to the adjoining substrate. High resistivity of the brazing alloy concentrates heat generated by the current flow in the brazing alloy rather than in the substrate.
    • 金属部件,包括诸如涡轮叶片和叶片的超合金部件,通过电阻与高电阻率钎焊合金组合物接合或修复。 在一些实施方案中,钎焊合金包括选自镍,铁和钴基合金的填充金属和选自磷(P),硼(B),硅(Si),锗(Ge) ,硫(S),硒(Se),碳(C),碲(Te)和锰(Mn)。 在执行本发明的方法中,将高电阻率钎焊合金组合物引入衬底缺陷中或插入待接合的两个衬底之间。 电流通过钎焊合金,直到合金熔化并与相邻的基体结合。 钎焊合金的高电阻率集中了由钎焊合金中而不是在基体中的电流产生的热。