会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 81. 发明申请
    • SYSTEM AND METHOD FOR DETECTING, DIAGNOSING, AND CORRECTING TRIPS OR FAILURES OF ELECTRICAL SUBMERSIBLE PUMPS
    • 用于检测,诊断和校正电潜水泵的故障或故障的系统和方法
    • WO2017161126A1
    • 2017-09-21
    • PCT/US2017/022721
    • 2017-03-16
    • UNIVERSITY OF HOUSTON SYSTEM
    • GUPTA, SupriyaNIKOLAOU, MichaelSAPUTELLI, LuigiBRAVO, Cesar
    • G01R31/34
    • The electrical submersible pump (ESP) is currently the fastest growing artificial-lift pumping technology. Deployed across 15 to 20 percent of oil-wells worldwide, ESPs are an efficient and reliable option at high production volumes and greater depths. However, ESP performance is often observed to decline gradually and reach the point of service interruption due to factors like high gas volumes, high temperature, and corrosion. The financial impact of ESP failure is substantial, from both lost production and replacement costs. Therefore, ESP performance in extensively monitored, and numerous workflows exist to suggest actions in case of breakdowns. However, such workflows are reactive in nature, i.e., action is taken after tripping or failure. Therefore, a data-driven analytical framework is proposed to advance towards a proactive approach to ESP health monitoring based on predictive analytics to detect impending problems, diagnose their cause, and prescribe preventive action.
    • 潜水电泵(ESP)是目前发展最快的人工举升泵技术。 在全球范围内部署15%至20%的油井,ESP在高产量和更大深度上是高效可靠的选择。 然而,由于诸如高气体量,高温和腐蚀等因素,经常观察到ESP性能逐渐下降并且到达服务中断点。 无论是生产损失还是重置成本,ESP失败的财务影响都很大。 因此,ESP在广泛监控下的性能以及众多工作流程可用于建议在发生故障时采取行动。 然而,这种工作流程本质上是被动的,即在跳闸或失败后采取行动。 因此,建议采用数据驱动的分析框架,以基于预测分析的ESP健康监测的主动方法,检测即将发生的问题,诊断其原因并规定预防措施。
    • 82. 发明申请
    • WELL DESIGN TO ENHANCE HYDROCARBON RECOVERY
    • 良好的设计以加强油气回收
    • WO2017083495A1
    • 2017-05-18
    • PCT/US2016/061289
    • 2016-11-10
    • UNIVERSITY OF HOUSTON SYSTEM
    • EHLIG-ECONOMIDES, ChristineDANESHY, Ali
    • E21B43/16E21B43/17
    • E21B43/305E21B43/26
    • Enhancing the recovery of unconventional and conventional hydrocarbons is possible by utilizing patterns of wells and hydraulic fractures that are carefully designed to avoid interconnection between injection and production well fractures to allow for both primary production and improved secondary production. Adjacent horizontal wells may be drilled and fractured, with selected wells converted to injection wells after primary production to produce alternating production and injection fractures. In addition, infill horizontal injection wells may be drilled and fractured adjacent to an existing and previously produced multiple transverse fracture horizontal hydrocarbon production well to produce alternating production and injection fractures.
    • 通过利用精心设计的井和水力压裂模式,可以提高非常规和常规烃的采收率,以避免注入井和生产井裂缝之间的相互连接,从而实现初级生产和改进的二次生产。 相邻的水平井可能会被钻探和压裂,在初次生产后选定的井转化为注入井,以产生交替的生产和注入裂缝。 另外,填充水平注入井可以在现有和先前生产的多个横向裂缝水平碳氢化合物生产井附近钻孔并断裂,以产生交替生产和注入裂缝。
    • 83. 发明申请
    • WIRELESS POWER TRANSFER SYSTEMS AND METHODS ALONG A PIPE USING FERRITE MATERIALS
    • 无线电力传输系统和使用铁素体的管道的方法
    • WO2017024012A1
    • 2017-02-09
    • PCT/US2016/045308
    • 2016-08-03
    • UNIVERSITY OF HOUSTON SYSTEM
    • XIN, XiyaoCHEN, JiJACKSON, David, R.
    • H02J50/10
    • H01F38/14H01F27/365H02J50/10
    • A wireless power transfer system may provide coils that are respectively position on upper and lower ends of a pipe to allow power to be wirelessly transferred. Additionally, the system may also provide a soft ferrite layer placed on the upper and lower pipe sections to enhance the magnetic coupling so that the wireless power transfer efficiency can be maintained at a sufficient level when the coil separation is relatively large. Notably, this ferrite layer may span most or the entirety of the region between the coils to further enhance performance. In some cases, a ferrite core may be position between the coils and the pipe as well. In some cases, the pipe may include a tool section that may be non-conductive or results in a discontinuity in the ferrite layer. However, the setup of the system allows power to be wirelessly transferred despite such discontinuity.
    • 无线电力传输系统可以提供分别位于管道的上端和下端的线圈,以允许无线传输电力。 此外,系统还可以提供放置在上管段和下管段上的软铁氧体层,以增强磁耦合,使得当线圈分离相对较大时,无线电力传输效率可以保持在足够的水平。 值得注意的是,该铁氧体层可以跨越线圈之间的大部分或全部区域,以进一步提高性能。 在一些情况下,铁氧体磁芯也可以位于线圈和管之间。 在一些情况下,管可包括可能不导电或导致铁氧体层不连续的工具部分。 然而,系统的设置允许无线传输功率,尽管这种不连续性。