会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明申请
    • REDUCTION OF ERRORS DURING COMPUTATION OF INVERSE DISCRETE COSINE TRANSFORM
    • 在反演离散COSINE变换计算过程中减少误差
    • WO2008002881A2
    • 2008-01-03
    • PCT/US2007072039
    • 2007-06-25
    • QUALCOMM INCGARUDADRI HARINATHREZNIK YURIY
    • GARUDADRI HARINATHREZNIK YURIY
    • G06F17/14
    • G06F17/147H04N19/45H04N19/60H04N19/61
    • Techniques are described to reduce rounding errors during computation of discrete cosine transform using fixed-point calculations. According to these techniques, a discrete cosine transform a matrix of scaled coefficients is calculated by multiplying coefficients in a matrix of coefficients by scale factors. Next, a midpoint bias value and a supplemental bias value are added to a DC coefficient of the matrix of scaled coefficients. Next, an inverse discrete cosine transform is applied to the resulting matrix of scaled coefficients. Values in the resulting matrix are then right-shifted in order to derive a matrix of pixel component values. As described herein, the addition of the supplemental bias value to the DC coefficient reduces rounding errors attributable to this right-shifting. As a result, a final version of a digital media file decompressed using these techniques may more closely resemble an original version of a digital media file.
    • 描述了使用定点计算在离散余弦变换计算期间减少舍入误差的技术。 根据这些技术,通过用系数矩阵乘以比例因子来计算缩放系数矩阵的离散余弦变换。 接下来,将中点偏置值和补充偏置值加到缩放系数矩阵的DC系数中。 接下来,将逆离散余弦变换应用于所得到的缩放系数矩阵。 然后将所得矩阵中的值右移,以便导出像素分量值的矩阵。 如这里所述,补充偏置值加到DC系数可以减少归因于该右移的舍入误差。 因此,使用这些技术解压缩的数字媒体文件的最终版本可能更接近于数字媒体文件的原始版本。
    • 24. 发明申请
    • 8-POINT TRANSFORM FOR MEDIA DATA CODING
    • 用于媒体数据编码的8点变换
    • WO2011005573A3
    • 2012-07-12
    • PCT/US2010039660
    • 2010-06-23
    • QUALCOMM INCREZNIK YURIYJOSHI RAJAN LKARCZEWICZ MARTA
    • REZNIK YURIYJOSHI RAJAN LKARCZEWICZ MARTA
    • H04N7/26G06F17/14
    • H04N19/00812G06F17/147H04N19/42H04N19/45H04N19/61H04N19/625
    • In general, techniques are described for implementing an 8-point discrete cosine transform (DCT). An apparatus comprising an 8-point discrete cosine transform (DCT) hardware unit may implement these techniques to transform media data from a spatial domain to a frequency domain. The 8-point DCT hardware unit includes an even portion comprising factors A, B that are related to a first scaled factor (µ) in accordance with a first relationship. The 8-point DCT hardware unit also includes an odd portion comprising third, fourth, fifth and sixth internal factors (G, D, E, Z) that are related to a second scaled factor (?) in accordance with a second relationship. The first relationship relates the first scaled factor to the first and second internal factors. The second relationship relates the second scaled factor to the third internal factor and a fourth internal factor, as well as, the fifth internal factor and a sixth internal factor.
    • 通常,描述了用于实现8点离散余弦变换(DCT)的技术。 包括8点离散余弦变换(DCT)硬件单元的装置可以实施这些技术以将媒体数据从空间域转换到频域。 8点DCT硬件单元包括与根据第一关系的第一缩放因子(μ)相关的因子A,B的偶数部分。 8点DCT硬件单元还包括与根据第二关系的第二比例因子(α)相关的第三,第四,第五和第六内部因素(G,D,E,Z)的奇数部分。 第一个关系将第一个缩放因子与第一个和第二个内部因素相关联。 第二个关系将第二个缩放因子与第三个内在因素和第四个内在因素以及第五个内在因素和第六个内在因素联系起来。
    • 25. 发明申请
    • FEATURE MATCHING BY CLUSTERING DETECTED KEPOINTS IN QUERY AND MODEL IMAGES
    • 通过在查询和模型图像中聚类检测的KEPOIN的特征匹配
    • WO2011069021A3
    • 2011-08-18
    • PCT/US2010058805
    • 2010-12-02
    • QUALCOMM INCVADDADI SUNDEEPHONG JOHN HHAMSICI ONUR CREZNIK YURIYLEE CHONG U
    • VADDADI SUNDEEPHONG JOHN HHAMSICI ONUR CREZNIK YURIYLEE CHONG U
    • G06K9/64
    • G06K9/6211
    • A method for feature matching in image recognition is provided. First, image scaling may be based on a feature distribution across scale spaces for an image to estimate image size/resolution, where peak(s) in the keypoint distribution at different scales is used to track a dominant image scale and roughly track object sizes. Second, instead of using all detected features in an image for feature matching, keypoints may be pruned based on cluster density and/or the scale level in which the keypoints are detected. Keypoints falling within high-density clusters may be preferred over features falling within lower density clusters for purposes of feature matching. Third, inlier-to-outlier keypoint ratios are increased by spatially constraining keypoints into clusters in order to reduce or avoid geometric consistency checking for the image.
    • 提供了一种图像识别中的特征匹配方法。 首先,图像缩放可以基于用于图像的尺度空间上的特征分布来估计图像尺寸/分辨率,其中使用不同尺度的关键点分布中的峰值来跟踪主要图像尺度并粗略地跟踪对象尺寸。 第二,不是使用图像中的所有检测到的特征来进行特征匹配,而是可以基于簇密度和/或检测关键点的比例级别来修剪关键点。 落入高密度簇内的关键点可能优于落入低密度簇内的特征,用于特征匹配。 第三,通过空间约束关键点进入群集来增加从早到晚的关键点比例,以便减少或避免图像的几何一致性检查。