会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • METHOD FOR OPTIMIZATION WITH GRADIENT INFORMATION
    • 用梯度信息优化的方法
    • WO2011049654A1
    • 2011-04-28
    • PCT/US2010/043402
    • 2010-07-27
    • EXXONMOBIL UPSTREAM RESEARCH COMPANYIMHOF, MatthiasGHAYOUR, KavehSUN, Tao
    • IMHOF, MatthiasGHAYOUR, KavehSUN, Tao
    • G06G7/48
    • G01V11/00G01V1/282G01V1/30G01V2210/614G01V2210/66G01V2210/661G01V2210/665
    • A method of improving a geologic model of a subsurface region. One or more sets of parameter values are selected. Each parameter represents a geologic property. A cost and a gradient of the cost are obtained for each set. A geometric approximation of a parameter space defined by one or more formations is constructed. A response surface model is generated expressing the cost and gradient associated with each formation. When a finishing condition is not satisfied, at least one additional set is selected based at least in part on the response surface model associated with previously selected sets. Parts of the method are repeated using successively selected additional sets to update the approximation and the response surface model until the finishing condition is satisfied. Sets having a predetermined level of cost to a geologic model of the subsurface region and/or their associated predicted outcomes are outputted to update the geologic model.
    • 一种改善地下区域地质模型的方法。 选择一组或多组参数值。 每个参数代表地质属性。 为每一组获得成本和成本梯度。 构造由一个或多个地层定义的参数空间的几何近似。 生成响应曲面模型,表示与每个组合相关联的成本和梯度。 当不满足整理条件时,至少部分地基于与先前选择的组相关联的响应面模型选择至少一个附加集合。 使用连续选择的附加集来重复该方法的部分以更新近似值和响应面模型,直到满足完成条件。 输出具有对地下区域的地质模型和/或其相关联的预测结果的预定成本水平的集合以更新地质模型。
    • 2. 发明申请
    • ADJOINT-BASED CONDITIONING OF PROCESS-BASED GEOLOGIC MODELS
    • 基于过程的地质模型的基于ADJOINT的调节
    • WO2010104537A1
    • 2010-09-16
    • PCT/US2009/066609
    • 2009-12-03
    • EXXONMOBIL UPSTREAM RESEARCH COMPANYGHAYOUR, KavehSUN, Tao
    • GHAYOUR, KavehSUN, Tao
    • G06G7/48
    • G01V1/30
    • A method for correlating data predicted by a process- or physics-based geologic model to describe a subsurface region with obtained data describing the subsurface region. Data is obtained describing an initial state of the subsurface region. Data describing a subsequent state of the subsurface region is predicted. The predicted data is compared with the obtained data taking into account whether the obtained data or the predicted data represent a discontinuous event. A sensitivity of the predicted data is determined if the predicted data is not within an acceptable range of the obtained data. The data describing the initial state of the subsurface region is adjusted based on the sensitivity before performing a subsequent iteration of predicting data describing the subsequent state of the subsurface region. A representation of the subsurface region based on the data describing the subsequent state of the subsurface region is outputted.
    • 将通过基于过程或物理的地质模型预测的数据相关联的方法来描述具有描述地下区域的获得的数据的地下区域。 获得描述地下区域的初始状态的数据。 预测描述地下区域的后续状态的数据。 将预测数据与获得的数据进行比较,考虑所获得的数据或预测数据是否表示不连续事件。 如果预测数据不在所获得的数据的可接受范围内,则确定预测数据的灵敏度。 描述地下区域的初始状态的数据在执行后续迭代预测描述地下区域的后续状态的数据的灵敏度之前被调整。 输出基于描述地下区域的后续状态的数据的地下区域的表示。
    • 3. 发明申请
    • FAULT REMOVAL IN GEOLOGICAL MODELS
    • 地质模型中的故障去除
    • WO2014051903A1
    • 2014-04-03
    • PCT/US2013/056437
    • 2013-08-23
    • EXXONMOBIL UPSTREAM RESEARCH COMPANYGHAYOUR, KavehBI, LinfengWU, Xiaohui
    • GHAYOUR, KavehBI, LinfengWU, Xiaohui
    • G06G7/48
    • G01V99/005G01V1/282G01V2210/66G06F17/10
    • Method for transforming a discontinuous, faulted subsurface reservoir into a continuous, fault-free space where a complete geological model based on selected geological concepts can be built and updated efficiently. Faults are removed in reverse chronological order (62) to generate a pseudo-physical continuous layered model, which is populated with information according to the selected geological concept (68). The fault removal is posed as an optimal control problem where unknown rigid body transformations and relative displacements on fault surfaces are found such that deformation of the bounding horizons and within the volume near the fault surface are minimized (63). A boundary-element-method discretization in an infinite domain is used, with boundary data imposed only on fault surfaces. The data populated model may then be mapped back to the original faulted domain such that a one-to-one mapping between continuous and faulted spaces may be found to a desired tolerance (72).
    • 将不连续,故障的地下储层变换为连续的无故障空间的方法,其中可以有效地构建和更新基于选定的地质概念的完整的地质模型。 以相反的时间顺序(62)去除故障以产生伪物理连续分层模型,其根据所选择的地质概念填充信息(68)。 故障去除是一个最佳的控制问题,其中发现了未知的刚体变形和断层表面的相对位移,使得边界层的变形和断层附近的体积最小化(63)。 使用无限域中的边界元方法离散化,边界数据仅施加在故障表面上。 然后可以将数据填充模型映射回原始故障域,使得可以发现连续故障空间和故障空间之间的一对一映射达到期望的公差(72)。
    • 4. 发明申请
    • GRADIENT-BASED WORKFLOWS FOR CONDITIONING OF PROCESS-BASED GEOLOGIC MODELS
    • 基于过程的地质模型的基于梯度的工作流程
    • WO2010104536A1
    • 2010-09-16
    • PCT/US2009/066608
    • 2009-12-03
    • EXXONMOBIL UPSTREAM RESEARCH COMPANYSUN, TaoGHAYOUR, KavehIMHOF, Matthias
    • SUN, TaoGHAYOUR, KavehIMHOF, Matthias
    • G06F7/60
    • G01V11/00
    • A method for correlating predicted data describing a subsurface region with obtained data describing the subsurface region is provided. Data is obtained describing an initial state of the subsurface region. Data describing a subsequent state of the subsurface region is predicted. A likelihood measure that determines whether the predicted data is within an acceptable range of the obtained data is dynamically and/or interactively updated. The predicted data is compared with the obtained data using the likelihood measure and determining a sensitivity of the predicted data if the predicted data is not within an acceptable range of the obtained data as measured by the likelihood measure. Data describing the initial state of the subsurface region is adjusted based on the sensitivity before performing a subsequent iteration of predicting data describing the subsequent state of the subsurface region. The predicted data is outputted.
    • 提供了一种将描述地下区域的预测数据与获得的描述地下区域的数据相关联的方法。 获得描述地下区域的初始状态的数据。 预测描述地下区域的后续状态的数据。 确定预测数据是否在所获得的数据的可接受范围内的似然度量被动态地和/或交互地更新。 如果预测数据不在通过似然度量测量得到的数据的可接受范围内,则将预测数据与所获得的数据进行比较,并使用似然度量确定预测数据的灵敏度。 描述地下区域的初始状态的数据在执行后续迭代预测描述地下区域的后续状态的数据之前基于灵敏度进行调整。 输出预测数据。