会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Cryogenic cooling system with precooling stage
    • 具有预冷阶段的低温冷却系统
    • US4990412A
    • 1991-02-05
    • US307487
    • 1989-03-03
    • Devin W. Hersey
    • Devin W. Hersey
    • F25B9/02F25B9/10F25B41/02F25J1/00H01M8/06
    • F25J1/0276F25B41/02F25B9/02F25B9/10H01M8/0656F25J2205/82Y10S204/04Y10S429/901
    • A cryogenic compressor for compressing hydrogen and oxygen and method for compressing these two gases. In a first preferred embodiment, an electrochemical compressor (12) is operative to compress hydrogen and oxygen gas. These two gases separately enter chamber (120 and 132) in an enclosure (118). Between the two chambers is disposed a catalytic membrane (124), sandwiched between a porous cathode (122) and a porous anode (126). A catalytic reaction combines the gases to form water, producing an electrical current as a byproduct. Adjacent chamber 132 are disposed a porous anode (134) and a porous cathode (138), sandwiched on each side of a catalytic membrane (136). An electric potential applied to porous anode (134) and porous cathode (138) transports water molecules and hydrogen from chamber (132) through catalytic membrane (136) into a chamber (140). The pressure in chamber (140) is substantially greater than the pressure in chamber (132). Yet another porous anode (142) and a porous cathode (146), sandwiched on each side of a catalytic membrane (144), are operative to dissociate the pressurized water into oxygen molecules, hydrogen ions, and free electrons in response to an applied electrical potential. The free electrons combine with the hydrogen ions to form hydrogen molecules. Both the oxygen and hydrogen gas streams produced by the latter catalytic reaction are at a substantially higher pressure than the gases entering the compressor. A second preferred embodiment uses a mechanical water pump (74) to pressurize water instead of the second catalytic reaction.
    • 用于压缩氢气和氧气的低温压缩机和压缩这两种气体的方法。 在第一优选实施例中,电化学压缩机(12)可操作以压缩氢气和氧气。 这两种气体分别进入外壳(118)内的室(120和132)。 在两个室之间设置有夹在多孔阴极(122)和多孔阳极(126)之间的催化膜(124)。 催化反应结合气体形成水,产生电流作为副产物。 邻近室132设置有夹在催化膜(136)的每一侧上的多孔阳极(134)和多孔阴极(138)。 施加到多孔阳极(134)和多孔阴极(138)的电势将水分子和氢从室(132)传送通过催化膜(136)进入室(140)。 腔室(140)中的压力基本上大于腔室(132)中的压力。 夹在催化膜(144)的每一侧上的另一个多孔阳极(142)和多孔阴极(146)可操作以响应于施加的电气将加压水解离成氧分子,氢离子和自由电子 潜在。 自由电子与氢离子结合形成氢分子。 由后一种催化反应产生的氧气和氢气流都比进入压缩机的气体高得多。 第二优选实施例使用机械水泵(74)来加压水而不是第二催化反应。
    • 4. 发明授权
    • Water-evaporation type cooling system based on electrolytic reaction and
water-evaporation type cooling method therefor
    • 基于电解反应和水蒸发式冷却方法的水蒸发式冷却系统
    • US5687576A
    • 1997-11-18
    • US682379
    • 1996-07-17
    • Tetsuo MoriguchiShiro Yamauchi
    • Tetsuo MoriguchiShiro Yamauchi
    • F25B21/00C25B9/00C25B9/08F25B15/14F25B23/00F25B41/02F25D9/00
    • F25B41/02F25B15/14Y02B30/62
    • A water evaporation type cooling system equipped with a hermetically sealed housing and a solid electrolytic membrane placed to divide the hermetically sealed housing into first and second hermetically sealed spaces. Water is reservoired within the first hermetically sealed space, while a condenser is situated to communicate with the second hermetically sealed space. A direct-current voltage is applied to the solid electrolytic membrane, with the result that a water electrolytic reaction takes place on its first hermetically sealed space side surface, while a water production reaction occurs on its second hermetically sealed space side surface. Protons produced by the water electrolysis pass through the solid electrolytic membrane to contribute to a water production reaction. Steam within the first hermetically sealed space is transferred to the second hermetically sealed space whereas the oxygen within the second hermetically sealed space is shifted to the first hermetically sealed space. Thus, the humidity within the first hermetically sealed space falls to accelerate the evaporation of the water reservoired within the first hermetically sealed space, thereby inducing a temperature drop.
    • 一种水蒸发式冷却系统,其配备有气密密封的壳体和固体电解质膜,以将密封的壳体分隔成第一和第二密封空间。 水在第一密封空间内被储存,而冷凝器位于与第二密封空间连通。 向固体电解质膜施加直流电压,其结果是在其第一密封空间侧表面发生水电解反应,同时在其第二密封空间侧表面发生水分生成反应。 由水电解产生的质子通过固体电解质膜,有助于水的生成反应。 第一密封空间内的蒸汽被转移到第二密封空间,而第二密封空间内的氧被转移到第一密封空间。 因此,第一密封空间内的湿度下降,加速在第一密封空间内储存的水的蒸发,从而引起温度下降。
    • 5. 发明授权
    • Closed cryogenic cooling system without moving parts
    • 封闭式低温冷却系统,无移动部件
    • US4671080A
    • 1987-06-09
    • US818045
    • 1986-01-13
    • Sidney Gross
    • Sidney Gross
    • F25B9/00F25B41/02F25B1/00
    • F25B9/00F25B41/02
    • The system generally includes an electrochemical pump for pressurizing a cryogenic gas, a heat exchanger for cooling the gas to below its inversion temperature, a Joule-Thomson flow restrictor to cool the gas by adiabatic expansion, a load heat exchanger that is thermally coupled to an electronic component or surface that requires cryogenic cooling, and a low-pressure flow path back to the pump. One or more reservoirs can be provided in the high-pressure and low-pressure flow paths. The flow paths can be thermally coupled by one or more regenerative heat exchangers. The electrochemical pump can be adapted to transport either protons or hydronium ions. Protons are preferably transported using pump components that do not contain water in any chemical form. Either hydrogen or oxygen can serve as the cryogen. Where hydrogen is the cryogen, the high-pressure flow path can be provided with a catalytic surface to convert ortho-hydrogen to para-hydrogen, and the low-pressure flow path can bear a catalyst to promote the reverse reaction.
    • 该系统通常包括用于对低温气体进行加压的电化学泵,用于将气体冷却至低于其转化温度的热交换器,通过绝热膨胀来冷却气体的焦耳 - 汤姆逊流量限制器,与热交换器 需要低温冷却的电子部件或表面,以及回到泵的低压流动路径。 可以在高压和低压流动路径中提供一个或多个储存器。 流路可以通过一个或多个再生式热交换器热耦合。 电化学泵可适用于运输质子或水合氢离子。 质子优选使用不含任何化学形式的水的泵组件运输。 氢或氧都可以用作冷冻剂。 在氢气是制冷剂的地方,高压流动路径可以设置催化剂表面,以将邻位氢转化为对位氢,低压流动路径可以承受催化剂以促进反向反应。
    • 9. 发明授权
    • Cryogenic cooling system with precooling stage
    • 具有预冷阶段的低温冷却系统
    • US4829785A
    • 1989-05-16
    • US256206
    • 1988-10-11
    • Devin W. Hersey
    • Devin W. Hersey
    • F25B9/02F25B9/10F25B41/02F25J1/00H01M8/06
    • F25J1/0276F25B41/02F25B9/02F25B9/10H01M8/0656F25J2205/82
    • A cryogenic cooling system using hydrogen as a primary refrigerant fluid and oxygen as a secondary refrigerant fluid to precool the hydrogen gas below its inversion temperature. In a first embodiment, the cryogenic cooling system (10) includes an electrochemical compressor (12) operative to compress hydrogen and oxygen gas without any moving parts. Compressed oxygen from the electrochemical compressor passes through a regenerative heat exchanger (24) in heat transfer relationship with low pressure oxygen, and expands through a Joule-Thomson expansion valve (28) absorbing heat from a compressed hydrogen gas stream in a precooler heat exchange (30). The low pressure oxygen provides additional cooling in a parasitic heat exchangeer (36), returning to the electrochemical compressor through the regenerative heat exchanger (24). Compressed hydrogen flows through a regenerative heat exchange (44) in heat transfer relationship with low pressure hydrogen, and is precooled as it passes through the precooler heat exchanger. A second regenerative heat exchaner (50) provides additional heat transfer with the low pressure hydrogen gas stream prior to expansion of the compressed hydrogen in a Joule-Thomson expansion valve (54). The expanding hydrogen cools a load in heat exchanger (58), returning to the electrochemical compressor through regenerative heat exchangers 44 to 50. In the second embodiment, a mechanical water pump is provided to compress water, which is used as an intermediate media between the low pressure and high pressure hydrogen and oxygen gas streams. In both embodiments, the hydrogen and oxygen gas are electrochemically combined into water using a catalytic membrane (124) and then disassociated by electrolysis into their respective oxygen and hydrogen gas streams using another catalytic membrane (144).
    • 使用氢气作为主要制冷剂流体的低温冷却系统和氧气作为二次制冷剂流体,以将氢气预冷却到低于其转化温度。 在第一实施例中,低温冷却系统(10)包括电化学压缩机(12),其可操作以压缩氢气和氧气而没有任何运动部件。 来自电化学压缩机的压缩氧通过与低压氧传热关系的再生式热交换器(24),并且通过在预冷器热交换中从压缩氢气流吸收热量的焦耳 - 汤姆森膨胀阀(28) 30)。 低压氧气在寄生热交换器(36)中提供额外的冷却,通过再生式热交换器(24)返回到电化学压缩机。 压缩的氢气通过与低压氢气的热传递关系的再生热交换器(44)流动,并且在其通过预冷器热交换器时被预冷却。 在焦耳 - 汤姆森膨胀阀(54)中膨胀压缩氢之前,第二再生式热交换器(50)提供与低压氢气流的额外传热。 膨胀的氢气冷却热交换器(58)中的负载,通过再生热交换器44至50返回到电化学压缩机。在第二实施例中,提供机械水泵来压缩水,其被用作介于 低压和高压的氢气和氧气流。 在两个实施方案中,使用催化膜(124)将氢气和氧气电化学地结合成水,然后使用另一种催化膜(144)通过电解解离成它们各自的氧气和氢气流。
    • 10. 发明授权
    • Water evaporation type cooling apparatus by means of electrolytic
reaction
    • 水蒸发式冷却装置采用电解反应
    • US5985111A
    • 1999-11-16
    • US952984
    • 1997-11-25
    • Tetsuo Moriguchi
    • Tetsuo Moriguchi
    • F25B15/14F25B41/02H05K7/20C25B9/00
    • H05K7/20336F25B15/14F25B41/02Y02B30/62
    • It is an object of the present invention to provide a water-evaporation type cooling apparatus which uses a solid-state electrolytic element, is free from an environmental protection problem, is soundless, and has a small size. An solid-state electrolytic element 50 is arranged to partition an airtight can 51 into spaces 51a, 51b, water 53 is reserved in the space 51a, and a condenser 55 is arranged to communicate with the space 51b. A water-reservation portion of the space 51a communicates with a water-reservation portion of the condenser 55 through a water path 57, and gas-phase portions of the spaces 51a, 51b communicate with each other through a ventilation path 58. A power is supplied from a DC power supply 52 to the solid-state electrolytic element 50 to make water decomposition reaction on an anode side and water generation reaction on a cathode side. A thermal connection surface 59 of a bottom portion of the space 51a is shaped into an outer surface shape along the outer surface shape of a target object 54.
    • PCT No.PCT / JP96 / 02952 Sec。 371日期:1997年11月25日 102(e)日期1997年11月25日PCT 1996年10月11日PCT公布。 出版物WO97 / 39294 日期:1997年10月23日本发明的目的是提供一种使用固态电解元件的水蒸发式冷却装置,没有环境保护问题,无声,尺寸小。 固体电解元件50被布置成将气密罐51分隔成空间51a,51b,水53被保留在空间51a中,并且冷凝器55布置成与空间51b连通。 空间51a的保水部通过水路57与冷凝器55的保水部连通,空间51a,51b的气相部通过通气路58相互连通。电力为 从直流电源52供给到固体电解元件50,以在阳极侧进行水分解反应,并在阴极侧产生水分生成反应。 空间51a的底部的热连接表面59沿着目标物体54的外表面形状成形为外表面形状。