会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Portable cooler
    • 便携式冷却器
    • US06799434B1
    • 2004-10-05
    • US10734826
    • 2003-12-12
    • Edgar Hobbs, Jr.
    • Edgar Hobbs, Jr.
    • F25B2100
    • F25D29/00F25D11/00F25D2400/12F25D2400/361
    • A portable cooler for selectively maintaining a variety of food and beverage items at a low temperature, comprising a substantially rectangular insulated container and a cooling device for cooling the interior volume of the insulated container. The insulated container has a storage compartment, a lid, and at least one hinge which pivotally attaches the lid to the storage compartment. The cooling device has an associated air outlet vent for exhausting heat extracted from the interior volume of the insulated container during operation of the cooling device. The portable cooler has a display panel for enabling a user to control the operation of the cooling device and has a battery compartment for selective containment therein of at least one battery for powering the cooling device.
    • 一种便携式冷却器,用于在低温下选择性地保持各种食品和饮料物品,包括基本为矩形的隔热容器和用于冷却隔热容器的内部容积的冷却装置。 隔热容器具有储藏室,盖子和至少一个将盖子枢转地附接到储藏室的铰链。 冷却装置具有相关联的空气出口排气口,用于在冷却装置的运行期间排出从绝热容器的内部容积提取的热量。 便携式冷却器具有用于使用户能够控制冷却装置的操作的显示面板,并且具有用于选择性地容纳至少一个用于为冷却装置供电的电池的电池室。
    • 2. 发明授权
    • Slush hydrogen production method and apparatus
    • 冷凝氢生产方法和装置
    • US06758046B1
    • 2004-07-06
    • US07237952
    • 1988-08-22
    • John A. BarclaySteven R. JaegerPeter J. ClaybakerCarl B. ZimmSteven F. Kral
    • John A. BarclaySteven R. JaegerPeter J. ClaybakerCarl B. ZimmSteven F. Kral
    • F25B2100
    • C01B3/00F25B21/00F25B2321/0021F25C1/142Y02B30/66Y02P20/124Y10S62/914
    • A slush hydrogen production device (10) utilizes a hydrogen slushifier magnetic refrigerator (30) having a wheel (50) of material exhibiting the magnetocaloric effect. The wheel is rotated through a magnetic field of varying intensity around the circumference of a wheel housing (36) created by the windings of superconductive magnets (56). The material of the wheel (50) follows a magnetic Carnot cycle as the wheel rotates (36) through regions of low temperature heat transfer and high temperature heat transfer. Liquid hydrogen is supplied to the regions of low and high temperature heat transfer through inlet pipes (39 and 42). Gaseous hydrogen is produced in the high temperature heat transfer region and vented away by an outlet pipe (48). Solid hydrogen is produced in the low temperature heat transfer region by direct solidification upon the magnetic wheel (50); and is removed by scrapers (76) and deposited in a compartment (26) where it mixes with liquid hydrogen to form slush hydrogen. A second magnetic refrigerator (108) may be used to keep its magnets and the magnets of the hydrogen slushifier magnetic refrigerator (30) at a temperature region suitable to maintain superconductivity. The slush hydrogen production device (10) may be part of a larger operating system that includes a liquid hydrogen storage tank (146), a slush hydrogen storage tank (136), a slush conditioner (148) and appropriate connective plumbing.
    • 冷凝氢制造装置(10)利用具有表现出磁热效应的材料的轮(50)的氢冷却剂磁性制冷机(30)。 车轮通过由超导磁体(56)的绕组产生的轮壳体(36)的圆周周围的不同强度的磁场旋转。 车轮(50)的材料随着车轮通过低温传热和高温热传递区域旋转(36)而跟随磁卡诺循环。 液体氢气通过入口管道(39和42)供应到低温和高温热传递区域。 在高温传热区域产生气态氢气,并通过出口管(48)排出。 通过在磁轮(50)上直接凝固,在低温传热区域产生固体氢。 并通过刮板(76)除去并沉积在隔室(26)中,在该隔室(26)中与液态氢混合形成冷凝氢。 可以使用第二磁性制冷器(108)将其磁性体和氢冷却剂磁性制冷器(30)的磁体保持在适于保持超导性的温度区域。 冷冻氢气生产装置(10)可以是更大的操作系统的一部分,其包括液体储氢罐(146),汲取氢气储存箱(136),冷却器(148)和适当的连接管道。
    • 3. 发明授权
    • Cooling device
    • 冷却装置
    • US06644036B2
    • 2003-11-11
    • US10149260
    • 2002-08-27
    • Burkhard Suthoff
    • Burkhard Suthoff
    • F25B2100
    • F25B21/00F25B2321/003H01L2924/0002Y02B30/66H01L2924/00
    • The invention relates to a novel cooling system (100) in which waste heat to be dissipated is first absorbed by an electron emission layer (15). The heat induces a discharge of electrons (13) from the surface of the electron emission layer, whereby the electrons are drawn off by a suction electrode (10) which is located on a positive potential located opposite the emission layer (15). The thermal energy carried along by the electrons (13) induce a heat transfer from the electron emission layer (15) to the suction electrode (10). The intensity of the electron flow can be controlled by the bias voltage of a grid (12) which is arranged between the electron emission layer (15) and the suction electrode (10). The surface of the electron emission layer (15) is preferably composed of alkaline earth metals such as barium or cesium.
    • 本发明涉及一种新的冷却系统(100),其中待消耗的废热首先被电子发射层(15)吸收。 热从电子发射层的表面引起电子(13)的放电,由此电子被位于与发射层(15)相对的正电位的吸电极(10)引出。 由电子(13)携带的热能导致从电子发射层(15)到吸引电极(10)的热传递。 电子流的强度可以通过布置在电子发射层(15)和抽吸电极(10)之间的栅格(12)的偏置电压来控制。 电子发射层(15)的表面优选由碱土金属如钡或铯组成。
    • 5. 发明授权
    • Thermodynamic cycles and method for generating electricity
    • 热循环和发电方法
    • US06725668B1
    • 2004-04-27
    • US09959081
    • 2001-10-16
    • Remi Oseri Cornwall
    • Remi Oseri Cornwall
    • F25B2100
    • F25B21/00F25B2321/0022H01L37/04Y02B30/66
    • An apparatus for performing a thermodynamic cycle comprising: a sample having a ferromagnetic phase transition temperature; means to magnetise the sample above the ferromagnetic phase transition temperature of the sample; and means to cool the sample to a temperature that is below the ferromagnetic phase transition temperature thereof, wherein the demagnetisation of the sample whilst the sample is below the ferromagnetic phase transition temperature thereof causes the generation of an independent magnetic flux. Also disclosed is a method of converting energy, comprising the steps of: providing a sample having a ferromagnetic transition temperature; magnetising the sample while the sample is above the ferromagnetic transition temperature thereof; allowing the sample to demagnetise while the sample is below the ferromagnetic transition temperature thereof, the demagnetisation of the sample causing an independent magnetic flux; and converting at least some of the independent magnetic flux into an electric current. An analogous ferroelectric apparatus and an analogous ferroelectric method are also presented.
    • 一种用于执行热力循环的装置,包括:具有铁磁相变温度的样品; 将样品磁化到样品的铁磁相变温度以上的手段; 以及将样品冷却至低于其铁磁相变温度的温度的装置,其中在样品低于其铁磁相变温度时样品的去磁性导致产生独立的磁通量。 还公开了一种转换能量的方法,包括以下步骤:提供具有铁磁转变温度的样品; 当样品高于其铁磁转变温度时,磁化样品; 允许样品在样品低于其铁磁转变温度的情况下退磁,导致独立磁通量的样品去磁; 并将至少一些独立磁通转换为电流。 还提出了类似的铁电装置和类似的铁电方法。
    • 8. 发明授权
    • Apparatus and methods for performing switching in magnetic refrigeration systems using thermoelectric switches
    • 在使用热电开关的磁性制冷系统中进行切换的装置和方法
    • US06595004B1
    • 2003-07-22
    • US10127080
    • 2002-04-19
    • Uttam Shyamalindu Ghoshal
    • Uttam Shyamalindu Ghoshal
    • F25B2100
    • H01L35/00F25B21/00F25B2321/0021F25B2321/0022F25D19/006H01L37/04Y02B30/66
    • Apparatus and methods for performing switching of heat flow in magnetic refrigeration systems are provided. In one embodiment, microelectromechanical (MEM) switches are provided for switching from a heat absorption phase and a heat rejection phase of a magnetic refrigeration cycle. In other embodiments, these MEM switches are replaced by thermoelectric switches. The thermoelectric switches operate such that an “on” state is defined as heat flow being allowed by virtue of the thermal conductivity of the thermoelectric switch. An “off” state is defined as a net zero heat flow through the thermoelectric switch obtained by providing a current that is just sufficient to offset the heat flow through the thermoelectric switch due to its thermal conductivity. In some embodiments, the thermoelectric switches are “directly coupled” thermoelectric switches, meaning that they are energized by a direct electrical coupling to a current source. In other embodiments, one or more of the thermoelectric switches are “inductively coupled” thermoelectric switches, meaning that they are energized indirectly by a magnetic coupling. The magnetic refrigeration system may be cascaded or paralleled to provide greater cooling.
    • 提供了用于在磁性制冷系统中进行热流切换的装置和方法。 在一个实施例中,提供了用于从磁性制冷循环的吸热相和排热相切换的微机电(MEM)开关。 在其他实施例中,这些MEM开关被热电开关代替。 热电开关的操作使得“接通”状态被定义为通过热电开关的热导率允许的热流。 “关闭”状态被定义为通过提供刚好足以抵消由于其导热性而通过热电开关的热流的电流而获得的通过热电开关的净零热流。 在一些实施例中,热电开关是“直接耦合”的热电开关,这意味着它们通过与电流源的直接电耦合来激励。 在其它实施例中,一个或多个热电开关是“感应耦合”的热电开关,这意味着它们被磁耦合间接地通电。 磁制冷系统可以级联或并联以提供更大的冷却。
    • 10. 发明授权
    • Magnetic condensing system for cryogenic engines
    • 用于低温发动机的磁冷凝系统
    • US06739137B2
    • 2004-05-25
    • US10151537
    • 2002-05-21
    • Michael Andrew Minovitch
    • Michael Andrew Minovitch
    • F25B2100
    • F25B21/00B64D27/02F01K27/005F25B2321/0021H01F1/0018H01F1/012Y02B30/66
    • A method and apparatus is provided for generating an artificial heat sink below ambient temperature for a cryogenic condenser by isothermally magnetizing a paramagnetic fluid and removing the magnetic field thereby creating a temperature drop in the fluid by the magentocaloric effect. The heat of magnetization is converted into mechanical work by initially placing the fluid inside a sealed chamber with a door that opens to a conduit leading into the bore of a superconducting solenoid. When the solenoid is energized with current, it creates a strong axial magnetic field that exerts magnetic attractive forces on the fluid inside the chamber. When the fluid is released by opening the door, it is accelerated through the conduit toward the superconducting solenoid where it becomes magnetized by the increasing strength of the magnetic field. By mounting a non-magnetic turbine inside the conduit between the solenoid and the chamber, the kinetic energy of the accelerating flow stream, which is equal to the heat of magnetization, is converted into mechanical work thereby achieving isothermal magnetization. By removing the magnetic field after the fluid enters the bore of the solenoid, a temperature reduction is achieved thereby enabling the fluid to absorb heat in a cryogenic condenser.
    • 提供了一种方法和装置,用于通过等温磁化顺磁流体并去除磁场,从而通过磁共振效应在流体中产生温度下降,从而为低温冷凝器产生低于环境温度的人造散热器。 通过首先将流体放置在具有通向通向超导螺线管的孔的导管的门的密封室内,将磁化热转换为机械功。 当电磁线圈通电时,会产生强烈的轴向磁场,该磁场对腔室内的流体施加磁力吸引力。 当通过打开门来释放流体时,其通过导管被加速到超导螺线管,在那里它被磁场的增加的强度磁化。 通过将非磁性涡轮机安装在螺线管和腔室之间的管道内,加速流动流的等于磁化热的动能被转换成机械功,从而实现等温磁化。 通过在流体进入螺线管的孔之后去除磁场,实现温度降低,从而使得流体能够在低温冷凝器中吸收热量。