会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • STRUCTURES AND METHODS FOR ELECTRICALLY AND MECHANICALLY LINKED MONOLITHICALLY INTEGRATED TRANSISTOR AND MEMS/NEMS DEVICES
    • 电力和机械连接的单相集成晶体管和MEMS / NEMS器件的结构和方法
    • US20130328109A1
    • 2013-12-12
    • US13990830
    • 2011-12-01
    • Amit LalKwame Amponsah
    • Amit LalKwame Amponsah
    • H01L25/16H01L29/66
    • H01L25/16B81C1/00246B81C2203/075H01L29/42316H01L29/66893H01L29/66901H01L29/735H01L29/8086H01L29/8126H01L2924/0002H01L2924/00
    • A device including a NEMS/MEMS machine(s) and associated electrical circuitry. The circuitry includes at least one transistor, preferably JFET, that is used to: (i) actuate the NEMS/MEMS machine; and/or (ii) receive feedback from the operation of the NEMS/MEMS machine The transistor (e.g., the JFET) and the NEMS/MEMS machine are monolithically integrated for enhanced signal transduction and signal processing. Monolithic integration is preferred to hybrid integration (e.g., integration using wire bonds, flip chip contact bonds or the like) due to reduce parasitics and mismatches. In one embodiment, the JFET is integrated directly into a MEMS machine, that is in the form of a SOI MEMS cantilever, to form an extra-tight integration between sensing and electronic integration. When a cantilever connected to the JFET is electrostatically actuated; its motion directly affects the current in the JFET through monolithically integrated conduction paths (e.g., traces, vias, etc.) In one embodiment, devices according to the present invention were realized in 2?m thick SOI cross-wire beams, with a MoSi2 contact metallization for stress minimization and ohmic contact. In this embodiment, the pull-in voltage for the MEMS cantilever was 21V and the pinch-off voltage of the JFET was −19V.
    • 包括NEMS / MEMS机器和相关联的电路的装置。 该电路包括至少一个晶体管,优选JFET,其用于:(i)致动NEMS / MEMS机器; 和/或(ii)从NEMS / MEMS机器的操作接收反馈晶体管(例如,JFET)和NEMS / MEMS机器是单片集成的,用于增强的信号传导和信号处理。 由于减少寄生和失配,整体集成优于混合集成(例如,使用引线键合,倒装芯片接触键等的集成)。 在一个实施例中,JFET直接集成在MEMS机器中,其是以SOI MEMS悬臂的形式,以形成感测和电子集成之间的非常紧密的集成。 当连接到JFET的悬臂被静电驱动时; 其运动通过单片集成导电路径(例如,迹线,通孔等)直接影响JFET中的电流。在一个实施例中,根据本发明的器件在2μm厚的SOI交叉线束中实现,其中MoSi 2 接触金属化用于应力最小化和欧姆接触。 在本实施例中,MEMS悬臂的拉入电压为21V,JFET的截止电压为-19V。
    • 5. 发明授权
    • Thin film transistor having Schottky barrier
    • 具有肖特基势垒的薄膜晶体管
    • US08410531B2
    • 2013-04-02
    • US13029101
    • 2011-02-16
    • Ming-Tse ChangChun-Wei Su
    • Ming-Tse ChangChun-Wei Su
    • H01L29/812
    • H01L51/0554H01L29/4908H01L29/7869H01L29/8126H01L29/872
    • A thin film transistor having Schottky barrier includes a substrate, a first gate conductive layer formed on the substrate, a first semiconductor layer having a first conductive type formed on the first gate conductive layer, a source conductive layer and a drain conductive layer electrically isolated from each other and positioned on the first semiconductor layer, a second semiconductor layer having a second conductive type formed on the source conductive layer and the drain conductive layer, and a second gate conductive layer formed on the second semiconductor layer. The first conductive type is complementary to the second conductive type.
    • 具有肖特基势垒的薄膜晶体管包括衬底,形成在衬底上的第一栅极导电层,形成在第一栅极导电层上的第一导电类型的第一半导体层,与第一栅极导电层电隔离的源极导电层和漏极导电层 彼此并且位于第一半导体层上,在源极导电层和漏极导电层上形成具有第二导电类型的第二半导体层,以及形成在第二半导体层上的第二栅极导电层。 第一导电类型与第二导电类型互补。
    • 7. 发明授权
    • Insulated gate field effect transistor having passivated schottky barriers to the channel
    • 绝缘栅场效应晶体管具有通道的钝化肖特基势垒
    • US07883980B2
    • 2011-02-08
    • US11403185
    • 2006-04-11
    • Daniel E. GruppDaniel J. Connelly
    • Daniel E. GruppDaniel J. Connelly
    • H01L21/336
    • H01L29/47H01L21/28537H01L23/535H01L29/0649H01L29/0895H01L29/456H01L29/4908H01L29/66143H01L29/66636H01L29/66643H01L29/66666H01L29/66772H01L29/66795H01L29/66848H01L29/78H01L29/7827H01L29/7839H01L29/785H01L29/78696H01L29/812H01L29/8126Y10S438/958
    • A transistor includes a semiconductor channel disposed nearby a gate and in an electrical path between a source and a drain, wherein the channel and at least one of the source or the drain are separated by an interface layer so as to form a channel-interface layer-source/drain junction in which a Fermi level of the semiconductor channel is depinned in a region near the junction and the junction has a specific contact resistance of less than approximately 1000 Ω-μm2. The interface layer may include a passivating material such as a nitride, a fluoride, an oxide, an oxynitride, a hydride and/or an arsenide of the semiconductor of the channel. In some cases, the interface layer consists essentially of a monolayer configured to depin the Fermi level of the semiconductor of the channel, or an amount of passivation material sufficient to terminate all or a sufficient number of dangling bonds of the semiconductor channel to achieve chemical stability of the surface. Also, the interface layer may include a separation layer of a material different than the passivating material. Where used, the separation layer has a thickness sufficient to reduce effects of metal-induced gap states in the semiconductor channel.
    • 晶体管包括设置在栅极附近并且在源极和漏极之间的电气路径中的半导体沟道,其中所述沟道和源极或漏极中的至少一个由界面层分开以形成沟道界面层 源极/漏极结,其中半导体通道的费米能级在接合点附近的区域中被取代,并且该结具有小于约1000Ω的比接触电阻。 界面层可以包括通道的半导体的钝化材料,例如氮化物,氟化物,氧化物,氧氮化物,氢化物和/或砷化物。 在一些情况下,界面层基本上由被配置为消除通道的半导体的费米能级的单层或者足以终止半导体通道的全部或足够数量的悬挂键以达到化学稳定性的钝化材料的量 的表面。 此外,界面层可以包括与钝化材料不同的材料的分离层。 在使用时,分离层具有足以减少半导体通道中金属诱发的间隙状态的影响的厚度。