会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Loading pattern generating system and loading device
    • 加载模式生成系统和装载装置
    • US6055462A
    • 2000-04-25
    • US108582
    • 1998-07-01
    • Toshiyuki Sato
    • Toshiyuki Sato
    • B65G57/00B25J9/16B65G61/00G06F7/00
    • B25J9/1687G05B2219/31042G05B2219/36513G05B2219/40006G05B2219/40453Y02P90/04
    • A loading pattern generating system requires only the input of loading pattern generating conditions to automatically generate a loading pattern which satisfies the target capacity within the physical constraints of a loading system. The loading pattern generating conditions include the size of a pallet, the size of a product, data relating to a loading device, and the target capacity to load products on a pallet. A candidate pattern registration device stores a plurality of candidate patterns for loading products on a pallet. A calculation section prepares a loading pattern which controls a loading device corresponding to the loading pattern generating conditions that have been input. The loading pattern is selected from the candidate patterns stored in the candidate pattern registration means device. The calculation section calculates the resulting loading capacity. This loading capacity is adjusted to satisfy the target loading capacity. The maximum torque on the palletizer is compared with an allowed torque. When the torque exceeds the maximum, the candidate pattern is rejected, and calculation is performed on the next candidate pattern. An output section outputs the resulting loading pattern.
    • 加载模式生成系统仅需要加载模式生成条件的输入,以自动生成在加载系统的物理约束内满足目标能力的加载模式。 装载模式生成条件包括托盘的尺寸,产品的尺寸,与装载装置有关的数据以及在托盘上装载产品的目标容量。 候选图案注册装置存储用于在货盘上装载商品的多个候选图案。 计算部分准备加载模式,其控制与已经输入的加载模式生成条件对应的加载装置。 从存储在候选模式登记装置装置中的候选模式中选择装载模式。 计算部分计算最终的装载量。 调整装载量以满足目标装载能力。 将码垛机上的最大扭矩与允许的扭矩进行比较。 当扭矩超过最大值时,候选模式被拒绝,并对下一个候选模式进行计算。 输出部分输出结果加载模式。
    • 5. 发明授权
    • Method of setting accelerating/decelerating motion of robot
    • 设置机器人加速/减速运动的方法
    • US5811952A
    • 1998-09-22
    • US793584
    • 1997-02-28
    • Tetsuaki KatoAtsuo Nagayama
    • Tetsuaki KatoAtsuo Nagayama
    • B25J9/10B25J9/18B25J13/00G05B19/18G05B19/416G05D17/02G05B13/00
    • G05B19/416G05B2219/40453G05B2219/40523G05B2219/43069
    • A method of setting an accelerating/decelerating motion of a robot, in which a torque of the robot can be used efficiently without being saturated. In one section of motion, a moving ratio r representing a position which satisfies a condition such that a maximum torque is generated at a position where the maximum torque is needed, is successively and approximately obtained. First, a 0-th approximate solution (initial value) is assumed as .sub.i r.sub.0 =0, and then equations of motion are calculated at the position .sub.i r.sub.0 to obtain an acceleration so as to generate the maximum torque. The position such that the torque becomes maximal when the calculated acceleration is used is obtained as .sub.i r.sub.k+1. The difference .vertline..sub.i r.sub.k+1 -.sub.i r.sub.k .vertline. between the calculated .sub.i r.sub.k+1 and the previously calculated .sub.i r.sub.k is calculated, and it is checked whether or not the difference exceeds a preset very small value .epsilon.. If yes, the processing returns to S3. If no, it is determined and stored as .sub.i rsol=.sub.i r.sub.k+1, the index i is increased by 1 and k is cleared as k=0. If calculation for all the axes has not completed, the processing returns S1. Upon completion of calculation for all the axes, the processing proceeds to S7. In S7, the maximum of .sub.i rsol is defined as rsol, an acceleration in accordance with rsol is obtained for each axis, and a condition for the accelerating motion of each axis is set.
    • PCT No.PCT / JP96 / 01819 Sec。 371日期1997年2月28日 102(e)1997年2月28日PCT PCT 1996年7月1日PCT公布。 出版物WO97 / 01801 日期1997年1月16日一种设定机器人的加速/减速运动的方法,其中可以有效地使用机器人的扭矩而不被饱和。 在运动的一个部分中,连续地且大致地获得表示满足在需要最大转矩的位置处产生最大转矩的条件的位置的移动比率r。 首先,假设第0次近似解(初始值)为ir0 = 0,然后在位置ir0计算运动方程,以获得加速度,以便产生最大扭矩。 获得当使用计算的加速度时转矩变为最大的位置为irk + 1。 差异| irk + 1-irk | 在计算出的irk + 1和先前计算的irk之间计算,并且检查该差是否超过预设的非常小的值ε。 如果是,则处理返回到S3。 如果否,则确定并存储为irsol = irk + 1,索引i增加1,k被清除为k = 0。 如果所有轴的计算尚未完成,则处理返回S1。 在完成所有轴的计算后,处理进行到S7。 在S7中,irsol的最大值被定义为rsol,对于每个轴获得与rsol相应的加速度,并且设定每个轴的加速运动的条件。
    • 8. 发明授权
    • Method for control of an industrial robot along a given track
    • 沿给定轨道控制工业机器人的方法
    • US06226565B1
    • 2001-05-01
    • US09101532
    • 1998-07-10
    • Staffan ElfvingJohn-Erik Snell
    • Staffan ElfvingJohn-Erik Snell
    • G05B1904
    • B25J9/163B25J9/1674G05B2219/39243G05B2219/40453
    • A method for control of the movement of the movement of an industrial robot along a given track (P1-P4) with a desired track speed (v), which industrial robot has a number of movement axes and for each axis servo equipment for control of the axis movement in accordance with reference values ({overscore (&tgr;)}korr) supplied thereto. First, those axis angles ({overscore (&phgr;)}i) which are needed for assuming the next position on the track are calculated. In dependence on the calculated axis angles and a first mathematical model, which describes the static and dynamic properties of the robot, for each one of the movement axes that torque ({overscore (&tgr;)}=(&tgr;1, &tgr;2 . . . &tgr;6)) is calculated which is required for assuming the next position. The load (t) is calculated at one or more mechanically critical points for the calculated axis angles ({overscore (&phgr;)}i) with the aid of a second mathematical model, which describes the load of the robot at the critical points. For each one of the axes, the calculated torque ({overscore (&tgr;)}) is compared with a maximum permissible torque, ({overscore (&tgr;)}max), and the load (t) is compared with a maximum permissible load (tmax) for the critical point. If the calculated torque exceeds the maximum permissible torque for any axis, or if the calculated load exceeds the maximum permissible load for any critical point, then the track speed (v) is reduced and the reference values for the servo system {overscore (&tgr;)}korr=(&tgr;korr1, &tgr;korr2 . . . &tgr;korr6, are calculated in dependence on the reduced track speed.
    • 一种用于控制工业机器人沿着给定轨道(P1-P4)的运动以期望的轨道速度(v)的运动的方法,该工业机器人具有多个运动轴线,并且每个轴线伺服设备用于控制 根据提供给它的参考值({overscore(&tgr;)} korr)的轴运动。 首先,计算在轨道上假定下一个位置所需的那些轴角({overscore(phi)} i)。 根据计算的轴角度和第一个数学模型,其描述了机器人的静态和动态特性,对于扭矩({overscore(&tgr))=(&tgr; 1,&tgr; 2)的每个运动轴 。。。&tgr; 6))是假定下一个位置所需的。 在第二个数学模型的帮助下,针对计算出的轴角度({overscore(phi)} i)的一个或多个机械临界点计算负载(t),该第二数学模型描述了机器人在临界点的负载。 对于每个轴,将计算的扭矩({overscore(&tgr;)})与最大允许扭矩({overscore(&tgr;)} max)进行比较,并将负载(t)与允许的最大值 临界点的负载(tmax)。 如果计算出的扭矩超过任何轴的最大允许扭矩,或者如果计算的载荷超过任何临界点的最大允许负载,则轨道速度(v)将减小,伺服系统的参考值(过大(&tgr; )} korr =(&tgr; korr1,&tgr; korr2。。&tgr; korr6,根据减小的轨道速度计算。