会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Device and method for relativistic electron beam heating of a
high-density plasma to drive fast liners
    • 用于高密度等离子体的相对论电子束加热以驱动快速衬垫的装置和方法
    • US4248665A
    • 1981-02-03
    • US9703
    • 1979-02-05
    • Lester E. Thode
    • Lester E. Thode
    • H05H1/02H05H1/22G21B1/00
    • G21B1/23H05H1/02
    • A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.
    • 用于小局部区域中的高密度等离子体的相对电子束加热的装置和方法。 相对论电子束发生器或加速器产生高压电子束,其沿真空漂移管传播并被调制以在光束内引发电子束。 然后将光束引导通过低密度气体室,其提供真空调制器和相对论电子束目标之间的隔离。 然后将相对论光束施加到高密度目标等离子体,其通常包括密度为1017至1020电子/立方厘米的DT,DD,氢硼或类似的热核气体。 在通过激光或其它预电离源施加电子束之前将目标气体电离以形成等离子体。 利用具有超过3MeV的单个粒子能量的相对论电子束,通过隔离箔的相对论电子的经典散射是可忽略的。 因此,在高密度目标等离子体中引发了相对论的流动不稳定性,导致相对论电子束有效地将其能量和动量沉积到高密度等离子体靶的小的局部区域中。 设置在高密度目标等离子体中的快速衬垫通过由环形相对论电子束产生的围绕快速衬垫的加热的环形等离子体被爆炸性地或者被驱动地内燃。 在环形等离子体中由轴向电流产生的方位磁场使得加热的环形等离子体中的能量会聚在快速衬垫上。
    • 3. 发明授权
    • Method for the depth corrected detection of ionizing events from a co-planar grids sensor
    • 用于从共面网格传感器深度校正检测电离事件的方法
    • US07531808B1
    • 2009-05-12
    • US11626919
    • 2007-01-25
    • Gianluigi De GeronimoAleksey E. BolotnikovGabriella Carini
    • Gianluigi De GeronimoAleksey E. BolotnikovGabriella Carini
    • H01L27/00H01L27/146
    • G01T1/241G01T1/247G01T1/2928
    • A method for the detection of ionizing events utilizing a co-planar grids sensor comprising a semiconductor substrate, cathode electrode, collecting grid and non-collecting grid. The semiconductor substrate is sensitive to ionizing radiation. A voltage less than 0 Volts is applied to the cathode electrode. A voltage greater than the voltage applied to the cathode is applied to the non-collecting grid. A voltage greater than the voltage applied to the non-collecting grid is applied to the collecting grid. The collecting grid and the non-collecting grid are summed and subtracted creating a sum and difference respectively. The difference and sum are divided creating a ratio. A gain coefficient factor for each depth (distance between the ionizing event and the collecting grid) is determined, whereby the difference between the collecting electrode and the non-collecting electrode multiplied by the corresponding gain coefficient is the depth corrected energy of an ionizing event. Therefore, the energy of each ionizing event is the difference between the collecting grid and the non-collecting grid multiplied by the corresponding gain coefficient. The depth of the ionizing event can also be determined from the ratio.
    • 一种利用包括半导体衬底,阴极电极,集电栅极和非集电栅极的共面栅极传感器来检测电离事件的方法。 半导体衬底对电离辐射敏感。 向阴极施加小于0伏特的电压。 将大于施加到阴极的电压的电压施加到非集电栅极。 将大于施加到非集电栅极的电压的电压施加到集电栅极。 收集网格和非收集网格相加和相减,分别创建和差异。 差异和总和分割创造一个比例。 确定每个深度(电离事件和收集网格之间的距离)的增益系数因子,由此收集电极和非集电极之间的差乘以相应的增益系数是电离事件的深度校正能量。 因此,每个电离事件的能量是收集网格和非收集网格之间的差值乘以相应的增益系数。 电离事件的深度也可以从该比例确定。
    • 8. 发明授权
    • Electrically insulating and sealing frame
    • 电绝缘和密封框架
    • US4414294A
    • 1983-11-08
    • US424111
    • 1982-09-27
    • Robin J. Guthrie
    • Robin J. Guthrie
    • H01M8/24H01M2/08
    • H01M8/2485
    • A combination gas seal and electrical insulator having a closed frame shape interconnects a fuel cell stack and a reactant gas plenum of a fuel cell generator. The frame can be of rectangular shape including at least one slidable spline connection in each side to permit expansion or contraction consistent with that of the walls of the gas plenum and fuel cell stack. The slidable spline connections in the frame sides minimizes lateral movement between the frame side members and sealing material interposed between the frame and the fuel cell stack or between the frame and the reactant gas plenum.
    • 具有闭合框架形状的组合气体密封和电绝缘体将燃料电池堆和燃料电池发生器的反应气体充气室相互连接。 框架可以是矩形形状,其包括在每一侧中的至少一个可滑动的花键连接,以允许与气体压力室和燃料电池堆的壁的膨胀或收缩一致的膨胀或收缩。 框架侧面中的可滑动的花键连接将框架侧构件和介于框架和燃料电池组之间或框架与反应气体增压室之间的密封材料之间的横向移动最小化。