会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Estimating healthcare outcomes for individuals
    • 估计个人的医疗结果
    • US08930225B2
    • 2015-01-06
    • US13448055
    • 2012-04-16
    • MacDonald Morris
    • MacDonald Morris
    • G06Q50/22G06Q50/24G06F19/00G06Q10/10G06Q40/08
    • G06Q40/08G06F19/00G06F19/325G06F19/328G06Q10/10G06Q50/22G06Q50/24G16H50/50
    • A method and apparatus for predicting a health benefit for an individual is provided. Outcomes from a first simulation on a set of simulated individuals reflecting a population are stored and used to determine a first risk function and corresponding cost values. Outcomes from a second simulation on a set of simulated individuals reflecting having a healthcare intervention are stored and used to determine a second risk function reflecting the intervention and corresponding cost values of the intervention. A benefit function is derived from the difference of the first and second risk functions. A cost function that describes the cost of the intervention is derived from the respective cost values. The derived benefit function and cost function are used to predict the corresponding benefit and cost of the healthcare intervention for a given individual. Individuals can be ranked by degree of expected benefit.
    • 提供了一种用于预测个体的健康益处的方法和装置。 存储一组反映人口的模拟个体的第一次模拟的结果,并用于确定第一风险函数和相应的成本值。 存储用于反映具有医疗保健干预的一组模拟个体的第二模拟的结果并用于确定反映干预的干预和相应成本值的第二风险函数。 利益函数来源于第一和第二风险函数的差异。 描述干预成本的成本函数是从各自的成本值得出的。 衍生的福利函数和成本函数用于预测给定个人的医疗干预的相应收益和成本。 个人可以按预期收益程度排列。
    • 5. 发明申请
    • INTERACTIVE HEALTHCARE MODELING WITH CONTINUOUS CONVERGENCE
    • 具有连续综合作用的交互式健康建模
    • US20140278472A1
    • 2014-09-18
    • US13841118
    • 2013-03-15
    • Archimedes, Inc.
    • ADAM GUETZ
    • G06Q50/22G06Q10/10
    • G06Q50/22G06Q10/10G16H50/30G16H50/50
    • A method comprises receiving a prediction request that comprises a target patient population definition; in response to receiving the prediction request, performing in real-time: parsing the prediction request to identify the target patient population definition; mapping the one or more target patient population characteristics to a function of one or more input variables of a particular dataset, from a plurality of datasets; computing a weighted subset of patients; based, at least in part, on the target patient population definition and the particular dataset; computing the prediction data based on the weighted subset of patients; returning the prediction data.
    • 一种方法包括接收包括目标患者群体定义的预测请求; 响应于接收到所述预测请求,实时执行:解析所述预测请求以识别所述目标患者群体定义; 从多个数据集将一个或多个目标患者群体特征映射到特定数据集的一个或多个输入变量的函数; 计算患者的加权子集; 至少部分地基于目标患者人群定义和特定数据集; 基于患者的加权子集计算预测数据; 返回预测数据。
    • 6. 发明授权
    • Generation of continuous mathematical model for common features of a subject group
    • 生成一个主题组的共同特征的连续数学模型
    • US07136787B2
    • 2006-11-14
    • US10025964
    • 2001-12-19
    • Leonard SchlessingerDavid Eddy
    • Leonard SchlessingerDavid Eddy
    • G06F17/10
    • G06F17/18G06F17/10G06F19/00G16H50/50Y10S707/99931Y10S707/99936Y10S707/99937
    • A method for generating a continuous mathematical model of a feature common to subjects in a subject group includes selecting a sample data set from each subject in the subject group, selecting a set of expansion functions to be used in the representation of the sample data set, mathematically expanding each member of the sample data set in the form of a summation of results of multiplying each the expansion function in the set of expansion functions by a different mathematical parameter wherein the expanding determines a value for each of the different mathematical parameters, deriving a corresponding distribution function for each of the mathematical parameters, and generating the continuous mathematical model of the feature from the derived distribution functions and the expansion functions. In this way, the model is continuous in time, incorporates dependencies between various parameters, and allows for creation of simulated subjects having pertinent features occurring in real subjects.
    • 一种用于产生对象群体中的受试者共同的特征的连续数学模型的方法,包括从所述对象组中的每个对象选择样本数据集,选择要用于所述样本数据集的表示中的一组扩展函数, 在数学上扩展样本数据集的每个成员,其形式是将扩展函数集合中的每个扩展函数乘以不同的数学参数的结果的总和,其中扩展确定每个不同数学参数的值,导出 对于每个数学参数的相应分布函数,以及从导出的分布函数和扩展函数生成特征的连续数学模型。 以这种方式,该模型是时间上连续的,并入各种参数之间的依赖关系,并且允许创建具有在真实主题中出现的相关特征的模拟对象。
    • 7. 发明申请
    • INTERACTIVE HEALTHCARE MODELING
    • 互动健康建模
    • US20140257829A1
    • 2014-09-11
    • US13791810
    • 2013-03-08
    • Archimedes, Inc.
    • Charles Andrew SchuetzMarc-david Cohen
    • G06F19/00
    • G16H50/50
    • A method comprises receiving a prediction request that comprises a population definition and one or more healthcare treatment criteria specifying a treatment scenario; in response to receiving the prediction request, performing in a real-time: parsing the prediction request to identify the population definition and the one or more healthcare treatment criteria; mapping the one or more healthcare treatment criteria to a function of one or more input variables to determine a particular dataset, from a plurality of datasets; based, at least in part, on the population definition and the particular dataset, determining a response surface; determining prediction data by estimating, using the response surface which approximates the healthcare simulation model, simulation results that using the healthcare simulation model would yield; returning the prediction data.
    • 一种方法包括接收包括人口定义和指定治疗方案的一个或多个医疗保健治疗标准的预测请求; 响应于接收到所述预测请求,实时执行:解析所述预测请求以识别所述种群定义和所述一个或多个保健治疗标准; 将所述一个或多个保健治疗标准映射到一个或多个输入变量的函数以从多个数据集中确定特定数据集; 至少部分地基于人口定义和特定数据集,确定响应面; 通过使用近似于医疗保健模拟模型的响应面,通过估计使用医疗保健模拟模型的模拟结果来确定预测数据; 返回预测数据。
    • 8. 发明授权
    • Estimating healthcare outcomes for individuals
    • 估计个人的医疗结果
    • US08224665B2
    • 2012-07-17
    • US12146727
    • 2008-06-26
    • MacDonald Morris
    • MacDonald Morris
    • G06Q10/00G06Q50/00
    • G06Q40/08G06F19/00G06F19/325G06F19/328G06Q10/10G06Q50/22G06Q50/24G16H50/50
    • A method and apparatus for predicting a health benefit for an individual is provided. Outcomes from a first simulation on a set of simulated individuals reflecting a population are stored and used to determine a first risk function and corresponding cost values. Outcomes from a second simulation on a set of simulated individuals reflecting having a healthcare intervention are stored and used to determine a second risk function reflecting the intervention and corresponding cost values of the intervention. A benefit function is derived from the difference of the first and second risk functions. A cost function that describes the cost of the intervention is derived from the respective cost values. The derived benefit function and cost function are used to predict the corresponding benefit and cost of the healthcare intervention for a given individual. Individuals can be ranked by degree of expected benefit.
    • 提供了一种用于预测个体的健康益处的方法和装置。 存储一组反映人口的模拟个体的第一次模拟的结果,并用于确定第一风险函数和相应的成本值。 存储用于反映具有医疗保健干预的一组模拟个体的第二模拟的结果并用于确定反映干预的干预和相应成本值的第二风险函数。 利益函数来源于第一和第二风险函数的差异。 描述干预成本的成本函数是从各自的成本值得出的。 衍生的福利函数和成本函数用于预测给定个人的医疗干预的相应收益和成本。 个人可以按预期收益程度排列。