会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and a circuit for encoding a digital signal to determine the
scalar product of two vectors, and corresponding DCT processing
    • 用于编码数字信号以确定两个矢量的标量产品的方法和电路,以及相应的DCT处理
    • US5218565A
    • 1993-06-08
    • US765001
    • 1991-09-24
    • Zhi-Jian MouFrancis Jutand
    • Zhi-Jian MouFrancis Jutand
    • H03M7/30G06F7/544G06F17/16G06T9/00H04N1/41
    • G06F17/16G06F7/5443G06T9/007
    • The invention relates to encoding a digital signal to determine the scalar product of two vectors. For two vectors of the same dimension p, one having dedicated components {ak} and the other having variable components {xk}, the scalar product value ##EQU1## is reduced to partial sums fi of binary variables xki, which binary variables take one of the values of the fixed components ak depending on the values of the xki having m possible values. Dedicated logic encoding makes it possible to take the variables xki and generate a plurality of bit level elementary partial sums fij for each bit of rank j in fi, having 2.sup.m possible values, by varying the binary values akj of the bits of rank j. A two-dimensional interconnection matrix causes each rank j bit akj to correspond to a single value of the elementary partial sums fij, and together these bits define the corresponding partial sum fi. The invention is applicable to circuits for image processing or for data compression by the discrete cosine transform.
    • 本发明涉及对数字信号进行编码以确定两个向量的标量乘积。 对于具有相同尺寸p的两个向量,一个具有专用分量{ak}且另一个具有可变分量{xk}的向量,标量乘积值被减少为二进制变量xki的部分和,其中二进制变量采用 根据具有m个可能值的xki的值,固定分量a k的值。 专用逻辑编码使得可以通过改变秩j的位的二进制值akj,获取变量xki并且生成具有2m个可能值的具有2m可能值的fi中的j级的每个位的多个位电平基本部分和fij。 二维互连矩阵使得每个秩j位akj对应于基本部分和fij的单个值,并且这些位一起定义相应的部分和fi。 本发明适用于通过离散余弦变换进行图像处理或数据压缩的电路。
    • 2. 发明授权
    • Cellular multiplier comprising a tree of the overturned stairs type, and
method of implementation
    • 包括翻转楼梯类型的树的蜂窝乘法器和实现方法
    • US5497342A
    • 1996-03-05
    • US338159
    • 1994-11-09
    • Zhi-Jian MouFrancis Jutand
    • Zhi-Jian MouFrancis Jutand
    • G06F7/53G06F7/52G06F7/527G06F7/50
    • G06F7/5318
    • A multiplier of order p and of depth n+1 is formed by a root R constituted by a carry-save adder and by a multiplier body CO(p,n) of order p and of depth n formed by a five-input connector operator C(n,q) of rank q, the connector operator C(n,1) of rank 1 is connected to the root R, the connector operator C(n,q) of rank q comprising first and second carry-save adders (1, 2) connected in cascade. The multiplier body CO(p,n) further includes a tree A(p-1,n-2) of order p-1 and of depth n-2 formed by an arrangement of carry-save adders and connected to the first carry-save adder (1), and a multiplier body CO(p,n-1 ) of order p and of lesser depth n-1 formed analogously to the multiplier body CO(p,n) of greater depth n by recurrence, the multiplier body CO(p,n-1) of lesser depth being connected to the connector operator C(n,q). The multiplier is applicable to performing calculations and to implementing digital filters.
    • 阶数_p和深度n + 1的乘数由由进位保存加法器和乘数体CO(p,n)构成的根R形成,并且由乘法器主体CO(p,n)和由五输入连接器运算符形成的深度_n 等级为q的C(n,q),等级1的连接器操作器C(n,1)连接到根R,包括第一和第二进位保存加法器的等级_q的连接器运算符C(n,q) 1,2)级联连接。 乘法器体CO(p,n)还包括由进位保存加法器的布置形成的p-1阶的树A(p-1,n-2)和深度n-2,并连接到第一进位 - 乘法器本体CO(p,n-1)的乘积体CO(p,n-1)和较小深度n-1的乘法器体CO(p,n-1)类似于通过复现而具有较大深度n的乘法器体CO(p,n) 较小深度的CO(p,n-1)连接到连接器操作器C(n,q)。 乘数适用于执行计算和实现数字滤波器。