会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • OPTIMIZING THE DETECTION OF OBJECTS IN IMAGES
    • 优化图像中对象的检测
    • US20130101157A1
    • 2013-04-25
    • US13277936
    • 2011-10-20
    • Ying LISharathchandra PANKANTI
    • Ying LISharathchandra PANKANTI
    • G06K9/00
    • G06K9/00805B60W2550/10B60W2550/402G06K9/00818G06T7/70G06T2207/30261H04N5/2256H04N5/2354H04N7/185
    • A system and method detect objects in a digital image. At least positional data associated with a vehicle is received. Geographical information associated with the positional data is received. A probability of detecting a target object within a corresponding geographic area associated with the vehicle is determined based on the geographical data. The probability is compared to a given threshold. An object detection process is at least one of activated and maintained in an activated state in response to an object detection process in response to the probability being one of above and equal to the given threshold. The object detection process detects target objects within at least one image representing at least one frame of a video sequence of an external environment. The object detection process is at least one of deactivated and maintained in a deactivated state in response to the probability being below the given threshold.
    • 系统和方法检测数字图像中的对象。 至少接收到与车辆相关联的位置数据。 接收与位置数据相关联的地理信息。 基于地理数据确定检测与车辆相关联的相应地理区域内的目标对象的概率。 将概率与给定阈值进行比较。 对象检测处理是响应于上述等于给定阈值的概率而响应于对象检测处理而被激活并保持在激活状态中的至少一个。 对象检测处理检测表示外部环境的视频序列的至少一帧的至少一个图像内的目标对象。 响应于低于给定阈值的概率,对象检测处理是去激活和维持在去激活状态中的至少一个。
    • 5. 发明申请
    • OBJECT RECOGNITION USING HAAR FEATURES AND HISTOGRAMS OF ORIENTED GRADIENTS
    • 使用HAAR特征的对象识别和面向对象的等级的组织
    • US20110255743A1
    • 2011-10-20
    • US13085985
    • 2011-04-13
    • Weiguang GUANNorman HAASYing LISharathchandra PANKANTI
    • Weiguang GUANNorman HAASYing LISharathchandra PANKANTI
    • G06K9/00
    • G06K9/00818G06K9/6257
    • A system and method to detect objects in a digital image. At least one image representing at least one frame of a video sequence is received. A sliding window of different window sizes at different locations is placed in the image. A cascaded classifier including a plurality of increasingly accurate layers is applied to each window size and each location. Each layer includes a plurality of classifiers. An area of the image within a current sliding window is evaluated using one or more weak classifiers in the plurality of classifiers based on at least one of Haar features and Histograms of Oriented Gradients features. An output of each weak classifier is a weak decision as to whether the area of the image includes an instance of an object of a desired object type. A location of the zero or more images associated with the desired object type is identified.
    • 一种用于检测数字图像中的对象的系统和方法。 接收表示视频序列的至少一帧的至少一个图像。 在不同位置的不同窗口大小的滑动窗口放置在图像中。 包括多个越来越精确的层的级联分类器被应用于每个窗口大小和每个位置。 每个层包括多个分类器。 基于Haar特征和定向梯度特征的至少一个,使用多个分类器中的一个或多个弱分类器来评估当前滑动窗口内的图像的区域。 每个弱分类器的输出是关于图像的区域是否包括期望对象类型的对象的实例的弱决定。 识别与所需对象类型相关联的零个或多个图像的位置。
    • 6. 发明申请
    • DETECTION OF OBJECTS IN DIGITAL IMAGES
    • 检测数字图像中的对象
    • US20110249867A1
    • 2011-10-13
    • US13086023
    • 2011-04-13
    • Norman HAASYing LISharathchandra PANKANTI
    • Norman HAASYing LISharathchandra PANKANTI
    • G06K9/00
    • G06K9/00818G06K9/6257
    • A system and method to detect objects in a digital image. At least one image representing at least one frame of a video sequence is received. A given color channel of the image is extracted. At least one blob that stands out from a background of the given color channel is identified. One or more features are extracted from the blob. The one or more features are provided to a plurality of pre-learned object models each including a set of pre-defined features associated with a pre-defined blob type. The one or more features are compared to the set of pre-defined features. The blob is determined to be of a type that substantially matches a pre-defined blob type associated with one of the pre-learned object models. At least a location of an object is visually indicated within the image that corresponds to the blob.
    • 一种用于检测数字图像中的对象的系统和方法。 接收表示视频序列的至少一帧的至少一个图像。 提取图像的给定颜色通道。 识别从给定颜色通道的背景中突出出的至少一个斑点。 从斑点中提取一个或多个特征。 将一个或多个特征提供给多个预先学习的对象模型,每个预先学习的对象模型包括与预定义的斑点类型相关联的一组预定义特征。 将一个或多个特征与一组预定义特征进行比较。 blob被确定为与预先识别的对象模型之一相关联的预定义blob类型的类型。 至少一个对象的位置在对应于斑点的图像内被目视指示。
    • 9. 发明申请
    • Synthetic Aperture Imaging Methods And Systems
    • 合成孔径成像方法与系统
    • US20160061950A1
    • 2016-03-03
    • US14841118
    • 2015-08-31
    • Yuan XUMichael C. KOLIOSPing GONGYing LI
    • Yuan XUMichael C. KOLIOSPing GONGYing LI
    • G01S13/90
    • G01S13/90G01S15/8904G01S15/8913G01S15/8997
    • The invention generally relates to the field of synthetic aperture imaging. In particular, the invention relates to systems and methods for generating synthetic transmit aperture (“STA”) signals and processing synthetic aperture imaging (“SAI”) signals for improved signal-to-noise ratio (“SNR”) and spatial resolution. This generally relates to a method to improve the signal-noise-ratio (SNR) of array signals by both encoding the transmission from multiple array elements with waveform modifications and time delays and encoding the receivers into output channels and decoding the measured signals at the selected output channels to estimate the equivalent received signals of a receiver as if only one transmitting element were fired individually in each transmission event. SAI techniques are subsequently applied to the equivalent SAI signals to obtain improved images.
    • 本发明一般涉及合成孔径成像领域。 特别地,本发明涉及用于产生合成发射孔径(“STA”)信号和处理合成孔径成像(“SAI”)信号以提高信噪比(“SNR”)和空间分辨率的系统和方法。 这通常涉及一种通过对具有波形修改和时间延迟的多个阵列元件的传输进行编码来改进阵列信号的信噪比(SNR)的方法,并且将接收机编码为输出通道并且将所选择的测量信号解码 输出通道来估计接收机的等效接收信号,好像在每个传输事件中仅单​​独地发射一个发射元件。 SAI技术随后应用于等效的SAI信号以获得改进的图像。