会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Integrated model predictive control and optimization within a process control system
    • 过程控制系统中的集成模型预测控制和优化
    • US07376472B2
    • 2008-05-20
    • US10241350
    • 2002-09-11
    • Wilhelm WojsznisTerry BlevinsMark Nixon
    • Wilhelm WojsznisTerry BlevinsMark Nixon
    • G05B11/32G05B13/04
    • G05B13/048G05B11/32G05B13/042
    • An integrated optimization and control technique integrates an optimization procedure, such as a linear or quadratic programming optimization procedure, with advanced control, such as model predictive control, within a process plant in which the number of control and auxiliary variables can be greater than the number of manipulated variables within the process plant. The technique first determines a step response matrix defining the correlation between changes in the manipulated variables and each of the process variables that are used during optimization. A subset of the control variables and auxiliary variables is then selected to be used as inputs to a model predictive control routine used to perform control during operation of the process and a square M by M control matrix to be used by the model predictive control routine is generated. Thereafter, during each scan of the process controller, the optimizer routine calculates the optimal operating target of each of the complete set of control and auxiliary variables and provides the determined target operating points for each of the selected subset of control and auxiliary variables to the model predictive control routine as inputs. The model predictive control routine determines changes in the manipulated variables for use in controlling the process from the target and measured values for each of the subset of the control and auxiliary variables and the M by M control matrix.
    • 集成优化和控制技术将优化过程(如线性或二次规划优化程序)与过程工厂内的高级控制(如模型预测控制)相集成,其中控制和辅助变量的数量可以大于数量 在过程工厂内的操纵变量。 该技术首先确定阶跃响应矩阵,其定义在优化期间使用的操纵变量和每个过程变量之间的相关性之间的相关性。 然后选择控制变量和辅助变量的子集作为用于在过程操作期间执行控制的模型预测控制程序的输入,并且由模型预测控制程序使用的M个控制矩阵的平方M 生成。 此后,在过程控制器的每次扫描期间,优化程序计算每个完整的控制和辅助变量集合的最佳操作目标,并将所选择的控制和辅助变量子集中的每一个的确定的目标工作点提供给模型 预测控制程序作为输入。 模型预测控制程序确定用于控制来自目标的过程的操纵变量的变化以及控制和辅助变量的子集中的每一个以及由M控制矩阵的M的测量值。
    • 2. 发明授权
    • Configuration and viewing display for an integrated model predictive control and optimizer function block
    • 集成模型预测控制和优化器功能块的配置和查看显示
    • US07330767B2
    • 2008-02-12
    • US10310416
    • 2002-12-05
    • Dirk ThieleTerry BlevinsRon OttenbacherWilhelm Wojsznis
    • Dirk ThieleTerry BlevinsRon OttenbacherWilhelm Wojsznis
    • G05B13/02G05B11/01G06G5/00G05B15/00
    • G05B13/048G05B11/32G05B13/042
    • An interface or display routine is provided for use in viewing and configuring a function block that performs integrated optimization and control within a process control system. The interface routine may enable a user to view or configure variables, values or other parameters associated with the integrated optimization and control block within the process control system. For example, the interface routine may display the current operating state of the integrated function block, may enable a user to select inputs and output of the function block for use in providing integrated optimization and control, may enable a user to select a particular or desired optimization function for use in the function block, etc. The interface routine may also display the multiple input output curves associated with the optimizer and the controller sections of the integrated function block in a manner that provides ease of view and selection of these curves as part of the algorithm used by the integrated function block.
    • 提供接口或显示程序用于查看和配置在过程控制系统内执行集成优化和控制的功能块。 接口例程可以使用户能够查看或配置与过程控制系统内的集成优化和控制块相关联的变量,值或其他参数。 例如,接口例程可以显示集成功能块的当前操作状态,可以使用户能够选择用于提供集成优化和控制的功能块的输入和输出,可以使用户能够选择特定或期望的 在功能块中使用的优化功能等。接口例程还可以以提供这些曲线的易于查看和选择的方式显示与优化器和控制器部分的多个输入输出曲线作为部分 的集成功能块使用的算法。
    • 3. 发明申请
    • Adaptive multivariable process controller using model switching and attribute interpolation
    • 使用模型切换和属性插值的自适应多变量过程控制器
    • US20050149209A1
    • 2005-07-07
    • US11002158
    • 2004-12-02
    • Wilhelm WojsznisTerrence BlevinsMark NixonPeter Wojsznis
    • Wilhelm WojsznisTerrence BlevinsMark NixonPeter Wojsznis
    • G05B11/32G05B13/02G05B13/04G05B17/02
    • G05B11/32G05B13/048G05B17/02
    • An adaptive multivariable process control system includes a multivariable process controller, such as a model predictive controller, having a multivariable process model characterized as a set of two or more single-input, single-output (SISO) models and an adaptation system which adapts the multivariable process model. The adaptation system detects changes in process inputs sufficient to start an adaptation cycle and, when such changes are detected, collects process input and output data needed to perform model adaptation. The adaptation system next determines a subset of the SISO models within the multivariable process model which are to be adapted, based on, for example, a determination of which process inputs are most correlated with the error between the actual (measured) process output and the process output developed by the multivariable process model. The adaptation system then performs standard or known model switching and parameter interpolation techniques to adapt each of the selected SISO models. After the adaptation of one or more of the SISO models, the resulting multivariable process model is validated by determining if the adapted multivariable process model has lower modeling error than the current multivariable process model. If so, the adapted multivariable process model is used in the multivariable controller.
    • 自适应多变量过程控制系统包括多变量过程控制器,例如模型预测控制器,其具有多变量过程模型,其特征在于一组两个或多个单输入单输出(SISO)模型和适应系统 多变量过程模型。 适应系统检测足够开始适应周期的过程输入的变化,并且当检测到这种变化时,收集执行模型适应所需的过程输入和输出数据。 接下来,适应系统确定多变量过程模型内的SISO模型的子集,其将被修改,例如,基于例如确定哪个过程输入与实际(测量)过程输出和 由多变量过程模型开发的过程输出。 然后,适配系统执行标准或已知的模型切换和参数插值技术以适配所选择的SISO模型。 在对一个或多个SISO模型进行了适应之后,通过确定适应的多变量过程模型是否具有比当前多变量过程模型更低的建模误差来验证所得到的多变量过程模型。 如果是这样,在多变量控制器中使用适应的多变量过程模型。
    • 7. 发明申请
    • Updating and Utilizing Dynamic Process Simulation in an Operating Process Environment
    • 在操作过程环境中更新和利用动态过程模拟
    • US20070129917A1
    • 2007-06-07
    • US11537975
    • 2006-10-02
    • Terrence BlevinsWilhelm WojsznisMark Nixon
    • Terrence BlevinsWilhelm WojsznisMark Nixon
    • G06G7/48
    • G05B19/0428G05B17/02G05B2219/23404G05B2219/23445G06F17/5009
    • A simulation system that includes interconnected simulation blocks which use process models to perform simulation activities for a process plant is integrated into a process control environment for the process plant in a manner that makes the simulation system easy to use and easily updated for on-line process simulation. The disclosed simulation system enables future predicted values as well as the current predicted values of process parameters produced by the simulation system to be made available for performance evaluation as well as to guide plant operations. Additionally, the simulation system is connected to the operating process plant to receive various on-line process plant measurements, and uses these measurements to automatically update the process models used in the simulation system, to thereby keep the simulation system coordinated with the actual operating conditions of the process plant.
    • 包括使用过程模型来执行过程工厂的模拟活动的互连仿真模块的模拟系统以使得模拟系统易于使用并且容易更新以用于在线处理的方式被集成到过程工厂的过程控制环境中 模拟。 所公开的模拟系统使未来预测值以及由模拟系统产生的过程参数的当前预测值可用于性能评估以及指导工厂操作。 此外,模拟系统连接到操作过程工厂,以接收各种在线过程工厂测量,并使用这些测量来自动更新模拟系统中使用的过程模型,从而使仿真系统与实际操作条件协调 的过程工厂。
    • 8. 发明申请
    • SELF-DIAGNOSTIC PROCESS CONTROL LOOP FOR A PROCESS PLANT
    • 自动诊断过程控制环路
    • US20070150079A1
    • 2007-06-28
    • US11565767
    • 2006-12-01
    • Terrence BlevinsWilhelm WojsznisGregory McMillanPeter Wojsznis
    • Terrence BlevinsWilhelm WojsznisGregory McMillanPeter Wojsznis
    • G05B13/02
    • G05B23/0251
    • A method of diagnosing an adaptive process control loop includes measuring process control loop signal data, generating a plurality of process control loop parameters from the process loop signal data and evaluating a condition of the adaptive process control loop from one or more of the plurality of process control loop parameters. The process control loop data is generated as a result of a normal operation of one or more process control devices within the adaptive process control loop when the adaptive process control loop is connected on-line within a process control environment. A self-diagnostic process control loop includes a diagnostic tool adapted to receive a diagnostic index pertaining to a process control loop parameter for each component of the process control loop and for the complete process control loop. Each diagnostic index is generated from signal data by a corresponding index computation tool. The diagnostic tool is further adapted to evaluate a condition of the process control loop from one or more of the diagnostic indices.
    • 诊断自适应过程控制回路的方法包括测量过程控制环路信号数据,从过程回路信号数据生成多个过程控制回路参数,并从多个过程中的一个或多个处理自适应过程控制回路的条件 控制回路参数。 当自适应过程控制回路在过程控制环境中在线连接时,作为自适应过程控制回路内的一个或多个过程控制设备的正常操作的结果,生成过程控制回路数据。 自诊断过程控制回路包括诊断工具,其适于接收与过程控制回路的每个部件和整个过程控制回路相关的过程控制回路参数的诊断指标。 每个诊断索引通过相应的索引计算工具从信号数据生成。 该诊断工具还适于从一个或多个诊断指标评估过程控制回路的状况。
    • 9. 发明申请
    • On-line adaptive model predictive control in a process control system
    • 过程控制系统中的在线自适应模型预测控制
    • US20070078529A1
    • 2007-04-05
    • US11240705
    • 2005-09-30
    • Dirk ThieleWilhelm Wojsznis
    • Dirk ThieleWilhelm Wojsznis
    • G05B13/02
    • G05B13/048
    • A method of creating and using an adaptive DMC type or other MPC controller includes using a model switching technique to periodically determine a process model, such as a parameterized process model, for a process loop on-line during operation of the process. The method then uses the process model to generate an MPC control model and creates and downloads an MPC controller algorithm to an MPC controller based on the new control model while the MPC controller is operating on-line. This technique, which is generally applicable to single-loop MPC controllers and is particularly useful in MPC controllers with a control horizon of one or two, enables an MPC controller to be adapted during the normal operation of the process, so as to change the process model on which the MPC controller is based to thereby account for process changes. The adaptive MPC controller is not computationally expensive and can therefore be easily implemented within a distributed controller of a process control system, while providing the same or in some cases better control than a PID controller, especially in dead time dominant process loops, and in process loops that are subject to process model mismatch within the process time to steady state.
    • 创建和使用自适应DMC类型或其他MPC控制器的方法包括使用模型切换技术来周期性地确定过程模型,例如参数化过程模型,用于在过程操作期间在线的过程循环。 然后,该方法使用过程模型来生成MPC控制模型,并且在MPC控制器在线运行时,基于新的控制模型创建MPC控制器算法并将其下载到MPC控制器。 这种技术通常适用于单回路MPC控制器,并且在控制范围为1或2的MPC控制器中特别有用,可以在过程的正常运行期间调整MPC控制器,以便改变过程 MPC控制器所基于的模型,从而说明过程变化。 自适应MPC控制器在计算上不是昂贵的,因此可以容易地在过程控制系统的分布式控制器内实现,同时提供与PID控制器相同或在某些情况下比PID控制器更好的控制,特别是在死区时间主导过程循环中,并且在处理中 在处理时间内处于稳定状态的流程模型不匹配的循环。
    • 10. 发明申请
    • Robust process model identification in model based control techniques
    • 基于模型的控制技术的鲁棒过程模型识别
    • US20070244575A1
    • 2007-10-18
    • US11403361
    • 2006-04-13
    • Wilhelm WojsznisAshish MehtaDirk Thiele
    • Wilhelm WojsznisAshish MehtaDirk Thiele
    • G05B13/02
    • G05B13/048G05B17/02
    • A robust method of creating process models for use in controller generation, such as in MPC controller generation, adds noise to the process data collected and used in the model generation process. In particular, a robust method of creating a parametric process model first collects process outputs based on known test input signals or sequences, adds random noise to the collected process data and then uses a standard or known technique to determine a process model from the collected process data. Unlike existing techniques for noise removal that focus on clean up of non-random noise prior to generating a process model, the addition of random, zero-mean noise to the process data enables, in many cases, the generation of an acceptable parametric process model in situations where no process model parameter convergence was otherwise obtained. Additionally, process models created using this technique generally have wider confidence intervals, therefore providing a model that works adequately in many process situations without needing to manually or graphically change the model.
    • 创建用于控制器生成过程模型(例如MPC控制器生成)的可靠方法为模型生成过程中收集和使用的过程数据增加了噪音。 特别地,创建参数过程模型的可靠方法首先基于已知的测试输入信号或序列收集过程输出,将随机噪声添加到收集的过程数据,然后使用标准或已知技术从收集的过程中确定过程模型 数据。 与在生成过程模型之前关注清除非随机噪声的噪声去除技术不同,在过程数据中添加随机的零均值噪声能够在许多情况下产生可接受的参数过程模型 在没有获得过程模型参数收敛的情况下。 此外,使用此技术创建的过程模型通常具有更宽的置信区间,因此提供了一个可在许多过程情况下正常工作的模型,无需手动或图形地更改模型。