会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Active probe for an atomic force microscope and method for use thereof
    • 原子力显微镜的有源探针及其使用方法
    • US07017398B2
    • 2006-03-28
    • US10966619
    • 2004-10-15
    • Dennis M. AddertonStephen C. Minne
    • Dennis M. AddertonStephen C. Minne
    • G01N13/16G01B5/28
    • G01Q60/34G01Q10/045G01Q10/065Y10S977/849Y10S977/851Y10S977/863Y10S977/869Y10S977/875Y10S977/881
    • An AFM that combines an AFM Z position actuator and a self-actuated Z position cantilever (both operable in cyclical mode and contact mode), with appropriate nested feedback control circuitry to achieve high-speed imaging and accurate Z position measurements. A preferred embodiment of an AFM for analyzing a surface of a sample in either ambient air or fluid includes a self-actuated cantilever having a Z-positioning element integrated therewith and an oscillator that oscillates the self-actuated cantilever at a frequency generally equal to a resonant frequency of the self-actuated cantilever and at an oscillation amplitude generally equal to a setpoint value. The AFM includes a first feedback circuit nested within a second feedback circuit, wherein the first feedback circuit generates a cantilever control signal in response to vertical displacement of the self-actuated cantilever during a scanning operation, and the second feedback circuit is responsive to the cantilever control signal to generate a position control signal. A Z position actuator is also included within the second feedback circuit and is responsive to the position control signal to position the sample. In operation, preferably, the cantilever control signal alone is indicative of the topography of the sample surface. In a further embodiment, the first feedback circuit includes an active damping circuit for modifying the quality factor (“Q”) of the cantilever resonance to optimize the bandwidth of the cantilever response.
    • AFM将AFM Z位置执行器和自动Z位置悬臂(可循环模式和接触模式)两者兼容,并配有适当的嵌套反馈控制电路,实现高速成像和精确的Z位置测量。 用于在环境空气或流体中分析样品表面的AFM的优选实施例包括具有与其集成的Z定位元件的自动致动悬臂和振荡器,该振荡器以大致等于 自激式悬臂的谐振频率和大致等于设定值的振荡幅度。 AFM包括嵌套在第二反馈电路内的第一反馈电路,其中第一反馈电路在扫描操作期间响应于自致动悬臂的垂直位移而产生悬臂控制信号,并且第二反馈电路响应于悬臂 控制信号以产生位置控制信号。 Z位置致动器还包括在第二反馈电路内,并且响应于位置控制信号来定位样品。 在操作中,优选地,悬臂控制信号单独指示样品表面的形貌。 在另一实施例中,第一反馈电路包括用于修改悬臂谐振的质量因子(“Q”)的主动阻尼电路,以优化悬臂响应的带宽。
    • 5. 发明授权
    • Apparatus and method to compensate for stress in a microcantilever
    • 用于补偿微悬臂梁中应力的装置和方法
    • US06941823B1
    • 2005-09-13
    • US10045438
    • 2001-11-07
    • Jonathan W. LaiHector B. CavazosStephen C. MinneDennis M. Adderton
    • Jonathan W. LaiHector B. CavazosStephen C. MinneDennis M. Adderton
    • G01L1/04
    • G01Q60/38G01Q70/04
    • A method to compensate for stress deflection in a compound microprobe that includes a substrate, a microcantilever extending outwardly from the substrate, and a film formed on the microcantilever. The method preferably comprises the steps of determining an amount of stress-induced deflection of the microcantilever, and then mounting the microprobe so as to compensate for the stress-induced deflection. The mounting step preferably includes selecting a compensation piece based upon the amount of stress-induced deflection, where the compensation piece is a wedge generally aligning the microcantilever with a deflection detection apparatus. In general, the step of selecting the compensation piece includes correcting an angle between a longitudinal axis of the microcantilever and the substrate so as to insure that light reflected from the microcantilever during operation contacts a detector of a deflection detection apparatus. The preferred embodiment is also directed to a microprobe assembly having a microcantilever and a substrate coupled to a support that includes a compensation piece disposed intermediate the support and the substrate. Again, the compensation piece is configured to compensate for an amount of static deflection of the microcantilever.
    • 一种用于补偿复合微探针中的应力偏转的方法,其包括基底,从基底向外延伸的微悬臂梁以及形成在微悬臂梁上的膜。 该方法优选地包括以下步骤:确定微悬臂梁的应力引起的偏转量,然后安装微探针以便补偿应力引起的偏转。 安装步骤优选地包括基于应力引起的偏转量来选择补偿件,其中补偿件是通常将微型悬臂与偏转检测装置对准的楔形件。 通常,选择补偿件的步骤包括校正微悬臂梁的纵向轴线和基板之间的角度,以确保在操作期间从微型悬臂梁反射的光接触偏转检测装置的检测器。 优选实施例还涉及一种微探针组件,该微探针组件具有微型悬臂梁和联接到支撑件的基板,该支撑件包括设置在支撑件和基板之间的补偿件。 再次,补偿件被配置为补偿微悬臂梁的静态挠曲量。
    • 6. 发明授权
    • Active probe for an atomic force microscope and method of use thereof
    • 原子力显微镜的有源探针及其使用方法
    • US06189374B1
    • 2001-02-20
    • US09280160
    • 1999-03-29
    • Dennis M. AddertonStephen C. Minne
    • Dennis M. AddertonStephen C. Minne
    • G01B528
    • G01Q60/34G01Q10/045G01Q10/065Y10S977/849Y10S977/851Y10S977/863Y10S977/869Y10S977/875Y10S977/881
    • An AFM that combines an AFM Z position actuator and a self-actuated Z position cantilever (both operable in cyclical mode and contact mode), with appropriate nested feedback control circuitry to achieve high-speed imaging and accurate Z position measurements. A preferred embodiment of an AFM for analyzing a surface of a sample includes a self-actuated cantilever having a Z-positioning element integrated therewith and an oscillator that oscillates the self-actuated cantilever at a frequency generally equal to a resonant frequency of the self-actuated cantilever and at an oscillation amplitude generally equal to a setpoint value. The AFM includes a first feedback circuit nested within a second feedback circuit, wherein the first feedback circuit generates a cantilever control signal in response to vertical displacement of the self-actuated cantilever during a scanning operation, and the second feedback circuit is responsive to the cantilever control signal to generate a position control signal. A Z position actuator is also included within the second feedback circuit and is responsive to the position control signal to position the sample. In operation, preferably, the cantilever control signal alone is indicative of the topography of the sample surface. In a further embodiment, the first feedback circuit includes an active damping circuit for modifying the quality factor (“Q”) of the cantilever resonance to optimize the bandwidth of the cantilever response.
    • AFM将AFM Z位置执行器和自动Z位置悬臂(可循环模式和接触模式)两者兼容,并配有适当的嵌套反馈控制电路,实现高速成像和精确的Z位置测量。 用于分析样品表面的AFM的优选实施例包括具有与其集成的Z定位元件的自动致动悬臂,以及振荡器,该振荡器以大体上等于自身的共振频率的频率振荡自动致动悬臂, 并且在大致等于设定值的振荡幅度下。 AFM包括嵌套在第二反馈电路内的第一反馈电路,其中第一反馈电路在扫描操作期间响应于自致动悬臂的垂直位移而产生悬臂控制信号,并且第二反馈电路响应于悬臂 控制信号以产生位置控制信号。 Z位置致动器还包括在第二反馈电路内,并且响应于位置控制信号来定位样品。 在操作中,优选地,悬臂控制信号单独指示样品表面的形貌。 在另一实施例中,第一反馈电路包括用于修改悬臂谐振的质量因子(“Q”)的主动阻尼电路,以优化悬臂响应的带宽。
    • 8. 发明授权
    • Tire sensor and method
    • US06637276B2
    • 2003-10-28
    • US09844193
    • 2001-04-27
    • Dennis M. AddertonStephen C. Minne
    • Dennis M. AddertonStephen C. Minne
    • G01L510
    • G01L5/161
    • A tire sensor assembly that is embedded in an elastomeric tire at a particular radial depth inwardly from a contact patch of the tire includes a flexible generally pyramid-shaped body and a pair of first strain sensors disposed on first opposed faces of the pyramid-shaped body, the first strain sensors detecting a force in a first direction. In addition, the assembly includes a pair of second strain sensors disposed on second opposed faces of the pyramid-shaped body, the second strain sensors detecting a force in a second direction. Moreover, each face of the first and second opposed faces is non-planar. Preferably, the first and second opposed faces of the pyramid-shaped body are curved and generally symmetrical about an axis extending longitudinally through the apex of the body so as to allow adjustment of the sensitivity of the sensor assembly generally independent of the radial depth. In one example, the first and second opposed faces are concave such that the sensor assembly is more sensitive to a tensile strain and less sensitive to a shear strain.