会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Numerical controller controlling five-axis machining tool
    • 数控五轴加工工具
    • US08283884B2
    • 2012-10-09
    • US13035635
    • 2011-02-25
    • Toshiaki OtsukiSoichiro IdeOsamu Hanaoka
    • Toshiaki OtsukiSoichiro IdeOsamu Hanaoka
    • G05B19/25
    • G05B19/404G05B2219/49344G05B2219/50297
    • A five-axis machining tool that machines a workpiece mounted on a table using three linear axes and two rotary axes is controlled by a numerical controller. The numerical controller calculates a translational compensation amount and a rotational compensation amount by obtaining axis-dependent translational compensation amounts and axis-dependent rotational compensation amounts on the basis of commanded axis positions. Then, the numerical controller moves the three linear axes and the two rotary axes of the five-axis machining tool to positions obtained by adding the translational compensation amount and the rotational compensation amount thus calculated to a command linear axis position and a command rotary axis position, respectively.
    • 使用三轴直线轴和两个旋转轴对安装在工作台上的工件进行加工的五轴加工工具由数字控制器控制。 数值控制器通过基于指令的轴位置获得与轴相关的平移补偿量和与轴相关的旋转补偿量来计算平移补偿量和旋转补偿量。 然后,数值控制器将五轴加工工具的三个直线轴和两个旋转轴移动到通过将如此计算的平移补偿量和旋转补偿量相加到指令直线轴位置和指令旋转轴位置而获得的位置 , 分别。
    • 2. 发明申请
    • NUMERICAL CONTROLLER FOR MULTI-AXIS MACHINE TOOL
    • 多轴机床数控机
    • US20110276173A1
    • 2011-11-10
    • US13038600
    • 2011-03-02
    • Toshiaki OtsukiSoichiro IdeOsamu HanaokaTakafumi Sasaki
    • Toshiaki OtsukiSoichiro IdeOsamu HanaokaTakafumi Sasaki
    • G05B19/19
    • G05B19/4103G05B2219/49286
    • A numerical controller for controlling a multi-axis machine tool having three linear axes and three rotating axes obtains an interpolated tool direction vector by interpolating a tool direction command and computes multiple solutions for three rotating axes from the vector. The three rotating axis positions are computed by synthesizing these multiple solutions. The three linear axis positions on a machine coordinate system are computed by adding to the interpolated tool center point position the product of the interpolated tool direction vector, or a verified tool direction vector based on the three rotating axis positions determined by the rotating axis position computing means, and a tool length compensation amount. The three rotating axes are moved to the positions computed above and the three linear axes are moved to the positions computed above.
    • 用于控制具有三个直线轴和三个旋转轴的多轴机床的数值控制器通过内插刀具方向指令获得内插的刀具方向矢量,并且从向量计算三个旋转轴的多个解。 通过合成这些多个解来计算三个旋转轴位置。 通过将内插刀具方向矢量的乘积或基于由旋转轴位置计算确定的三个旋转轴位置的经验证的刀具方向矢量相加,插入到刀具中心点位置来计算机床坐标系上的三个直线轴位置 装置和刀具长度补偿量。 三个旋转轴被移动到上面计算的位置,并且三个线性轴被移动到上面计算的位置。
    • 5. 发明授权
    • Numerical controller for controlling five-axis machining apparatus
    • 用于控制五轴加工设备的数控机床
    • US08260453B2
    • 2012-09-04
    • US12325419
    • 2008-12-01
    • Toshiaki OtsukiSoichiro IdeOsamu HanaokaDaijirou Koga
    • Toshiaki OtsukiSoichiro IdeOsamu HanaokaDaijirou Koga
    • G05B19/00G05B19/18G05B19/25G05B19/41G05B19/416B25J9/06B25J9/10
    • G05B19/4103G05B19/404G05B2219/35158G05B2219/49344G05B2219/50297G05B2219/50336
    • A numerical controller for controlling a five-axis machining apparatus, in which a tool orientation command is corrected to thereby attain a smooth machined surface and a shortened machining time. The numerical controller includes command reading device that successively reads a tool orientation command, tool orientation command correcting device that corrects the tool orientation command so that a ratio between each rotary axis motion amount and a linear axis motion amount is constant in each block, interpolation device that determines respective axis positions at every interpolation period based on the tool orientation command corrected by the tool orientation command correcting device, a motion path command, and a relative motion velocity command such that a tool end point moves along a commanded motion path at a commanded relative motion velocity, and device that drives respective axis motors such that respective axis positions determined by the interpolation device are reached.
    • 一种用于控制五轴加工装置的数值控制器,其中对刀具取向指令进行校正,从而获得平滑的加工表面和缩短的加工时间。 数值控制器包括:命令读取装置,其连续地读取刀具定向指令;刀具取向指令校正装置,其校正刀具取向指令,使得每个旋转轴运动量与直线轴运动量之间的比率在每个块中是恒定的;插值装置 基于由刀具定向指令校正装置校正的刀具取向指令,运动路径指令和相对运动速度指令,在每个插补周期确定各个轴位置,使得刀具终点沿着命令的命令运动路径移动 相对运动速度和驱动相应轴电动机的装置,使得到达由内插装置确定的各个轴位置。
    • 6. 发明授权
    • Numerical controller for multi-axis machine tool
    • 多轴机床数控系统
    • US08255078B2
    • 2012-08-28
    • US13038600
    • 2011-03-02
    • Toshiaki OtsukiSoichiro IdeOsamu HanaokaTakafumi Sasaki
    • Toshiaki OtsukiSoichiro IdeOsamu HanaokaTakafumi Sasaki
    • G05B19/19
    • G05B19/4103G05B2219/49286
    • A numerical controller for controlling a multi-axis machine tool having three linear axes and three rotating axes obtains an interpolated tool direction vector by interpolating a tool direction command and computes multiple solutions for three rotating axes from the vector. The three rotating axis positions are computed by synthesizing these multiple solutions. The three linear axis positions on a machine coordinate system are computed by adding to the interpolated tool center point position the product of the interpolated tool direction vector, or a verified tool direction vector based on the three rotating axis positions determined by the rotating axis position computing means, and a tool length compensation amount. The three rotating axes are moved to the positions computed above and the three linear axes are moved to the positions computed above.
    • 用于控制具有三个直线轴和三个旋转轴的多轴机床的数值控制器通过内插刀具方向指令获得内插的刀具方向矢量,并且从向量计算三个旋转轴的多个解。 通过合成这些多个解来计算三个旋转轴位置。 通过将内插刀具方向矢量的乘积或基于由旋转轴位置计算确定的三个旋转轴位置的经验证的刀具方向矢量相加,插入到刀具中心点位置来计算机床坐标系上的三个直线轴位置 装置和刀具长度补偿量。 三个旋转轴被移动到上面计算的位置,并且三个线性轴被移动到上面计算的位置。
    • 8. 发明授权
    • Numerical controller
    • 数控机
    • US07433754B2
    • 2008-10-07
    • US11790069
    • 2007-04-23
    • Toshiaki OtsukiSoichiro Ide
    • Toshiaki OtsukiSoichiro Ide
    • G06F19/00
    • G05B19/4103G05B2219/34089G05B2219/34149G05B2219/49344
    • A numerical controller configured to enable machining of a conical surface such that vectors at a start point, an end point, and an interpolation point of a circular arc and their extensions never cross one another. Normal direction vectors Vnors and Vnore, tangential direction vectors Vtans and Vtane, and tool posture vectors Vts and Vte at the starting and end points are obtained based on programmed positions PA′ and PB′ of the starting and end points, a circle center position, and rotational positions of two rotary axes. Based on these vectors, tangential direction angles as and ae and the normal direction angles bs and be with respect to tool postures at the starting and end points are obtained. Normal and tangential direction vectors Vnori and Vtani and angles ai and bi at the interpolation point are obtained by interpolating the normal and tangential direction vectors and angles at the starting and end points, whereby a tool posture vector Vti at the interpolation point is obtained. The rotational positions of the rotary axes and positions of linear axes are obtained based on the tool posture vector Vti at the interpolation point. Circular machining can be also performed for a three-dimensional programmed circular arc.
    • 一种数字控制器,其被配置为能够加工圆锥形表面,使得在起始点,终点和圆弧的内插点处的矢量及其延伸部不会相互交叉。 根据起始点和终点的编程位置PA'和PB',圆心中心位置,圆弧中心位置, 和两个旋转轴的旋转位置。 基于这些向量,获得切向方向角度和ae以及法线方向角度bs,并且相对于起点和终点处的工具姿势。 通过内插正交和切向方向矢量以及起点和终点处的角度来获得正交和切向方向矢量Vnori和Vtani以及插值点处的角度ai和bi,由此获得插值点处的刀具姿态矢量Vti。 基于插补点处的刀具姿势向量Vti,获得旋转轴的旋转位置和直线轴的位置。 也可以对三维编程圆弧进行圆形加工。
    • 9. 发明授权
    • Work installation error measuring apparatus
    • 工作安装误差测量仪
    • US07269473B2
    • 2007-09-11
    • US11397692
    • 2006-04-05
    • Toshiaki OtsukiSoichiro IdeTakafumi Sasaki
    • Toshiaki OtsukiSoichiro IdeTakafumi Sasaki
    • G06F19/00G05B19/18
    • G01B21/042
    • A work is installed on a table of a machine tool, and the coordinate system on the work is (X′, Y′, Z′). Each three points on respective three faces of the work, which are orthogonal to one another, A, B, C, D, E, F, G, H and I, are detected with a touch probe. From three points on the same plane, each of three formulas of planes which lies on the three points, respectively, are obtained. A position O′ (XO, YO, ZO) of a point where the three plane intersect with one another is obtained. This position is a parallel translation error. From these three plane formulas, points on the X′, Y′ and Z′ axes each being distant from the position O′ by the length L are obtained. Rotation matrices are obtained from the respective points, position O′ (XO, YO, ZO), and L. Rotary direction errors are obtained using the rotation matrices. In this manner, a work location error which is composed of the three-dimensional parallel translation error and three-dimensional rotary direction errors is obtained.
    • 工件安装在机床的工作台上,工件上的坐标系为(X',Y',Z')。 A,B,C,D,E,F,G,H和I彼此正交的工件的相应三个面上的每个三个点都用探针检测。 从同一平面上的三个点,分别得到位于三个点上的三个平面的三个公式。 获得三个平面彼此相交的点的位置O'(X O,O,Y O,Z O O)。 这个位置是平行翻译错误。 通过这三个平面公式,可以得到X',Y',Z'各自远离位置O'长度L的点。 旋转矩阵从相应的位置获得,位置O'(X O,O,O,Z O O)和L.旋转方向误差 使用旋转矩阵获得。 以这种方式,获得由三维平行平移平移误差和三维旋转方向误差构成的作业位置误差。
    • 10. 发明申请
    • Numerical control device
    • 数控装置
    • US20050090930A1
    • 2005-04-28
    • US10968127
    • 2004-10-20
    • Toshiaki OtsukiSoichiro IdeTakafumi Sasaki
    • Toshiaki OtsukiSoichiro IdeTakafumi Sasaki
    • G05B19/19G05B19/4061G05B19/4068G06F19/00
    • G05B19/4061G05B2219/49137G05B2219/49141
    • The shapes of machine parts for which the possibility of interference exists are defined as rectangular parallelepipeds and it is judged whether or not there is interference between a first rectangular parallelepiped of a first machine part and a second rectangular parallelepiped of a second machine part. The method involves rotating the first rectangular parallelepiped and second rectangular parallelepiped so that each side of the first rectangular parallelepiped lies parallel to each axis of the reference coordinate system. Interference is thus judged based on whether any vertex of the second rectangular parallelepiped exists within the first rectangular parallelepiped. Likewise, interference is judged depending on whether any vertex of the first rectangular parallelepiped exists within the second rectangular parallelepiped. Further, interference between the respective sides of the first rectangular parallelepiped and second rectangular parallelepiped is judged through division into the planes X-Y, Y-Z, and Z-X. When it is judged that interference exists in all planes, it is judged that there will be interference between the first rectangular parallelepiped and second rectangular parallelepiped.
    • 存在干涉可能性的机器部件的形状被定义为长方体,并且判断在第一机器部件的第一长方体和第二机器部件的第二长方体之间是否存在干涉。 该方法涉及旋转第一长方体和第二长方体,使得第一长方体的每一侧平行于参考坐标系的每个轴。 因此,基于第一长方体中是否存在第二长方体的任何顶点来判断干涉。 类似地,根据第一长方体的任何顶点是否存在于第二长方体内来判断干涉。 此外,通过划分为平面X-Y,Y-Z和Z-X来判断第一长方体和第二长方体的各个侧面之间的干涉。 当判断在所有平面中存在干涉时,判断出在第一长方体和第二长方体之间存在干涉。