会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • METHOD OF DESIGNING CARBOHYDRATES
    • US20230099373A1
    • 2023-03-30
    • US17777922
    • 2020-11-19
    • THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    • Nathan E. LewisWan-Tien ChiangChenguang Liang
    • C12N15/10
    • Glycosylated biopharmaceuticals are important in the global pharmaceutical market. Despite the importance of their glycan structures, our limited knowledge of the glycosylation machinery still hinders controllability of this critical quality attribute. To facilitate discovery of glycosyltransferase specificity and predict glycoengineering efforts, here we extend an approach to model biosynthetic pathways for all measured glycans, and the Markov chain modeling is used to learn glycosyltransferase isoform activities and predict glycosylation following glycosyltransferase knock-in/knockout. We apply our methodology to four different glycoengineered therapeutics (i.e., Rituximab, erythropoietin, Enbrel, and alpha-1 antitrypsin) produced in CHO cells, along with o-glycosylation and lipid profiles. Our models accurately predict N-linked glycosylation following glycoengineering and further quantified the impact of glycosyltransferase mutations on reactions catalyzed by other glycosyltransferases. By applying these learned GT-GT interaction rules identified from single glycosyltransferase mutants, our model further predicts the outcome of multi-gene glycosyltransferase mutations on the diverse biotherapeutics. We further apply this to study differential O-glycosylation and lipidomics. Thus, this modeling approach enables rational glycoengineering and the elucidation of relationships between glycosyltransferases and other enzyme classes, thereby facilitating biopharmaceutical research and aiding the broader study of glycosylation to elucidate the genetic basis of complex changes in glycosylation and the lipidome.