会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • RENEWABLY DERIVED THERMOPLASTIC POLYESTER-BASED URETHANES AND METHODS OF MAKING AND USING THE SAME
    • US20170145146A1
    • 2017-05-25
    • US15361184
    • 2016-11-25
    • Trent University
    • Suresh NarineShegufta ShetranjiwallaShaojun LiLaziz Bouzidi
    • C08G18/42C08G18/76
    • C08G18/4238C08G18/244C08G18/3206C08G18/664C08G18/73C08G18/7671C08G2230/00
    • The disclosure generally provides high-molecular-weight thermoplastic polyester-based urethanes (TPEUs). In some embodiments, the component monomers of the TPEUs are entirely derived from renewable sources. The disclosure also provides methods of making high-molecular-weight TPEUs, and, in particular, methods for achieving such high molecular weights. The disclosure also provides certain uses of such TPEUs.High molecular weight, semi-crystalline TPEU elastomers were synthesized from polyester diols (PEDs) and 1,7 heptamethylene diisocyanate (HPMDI) both derived from oleic acid. Functional group stoichiometry and polymerization time were used as tools to control molecular weight and optimize the thermal and mechanical properties of the TPEU. A targeted range of PEDs with controlled molecular weights and narrow polydispersity indices were obtained in high yields using an induced stoichiometric imbalance method. The PEDs were reacted with HPMDI with different NCO:OH ratios (1.1 to 2.1) and polymerization times (2 to 24 hours) in order to obtain high molecular weight TPEUs. Solvent-resistant TPEUs, displaying polyethylene-like behavior with controlled polyester and urethane segment phase separation were obtained and characterized by FTIR, 1H-NMR, GPC, DSC, TGA and tensile tests in order to reveal the structure-property relationships. Melting and glass transition temperatures, tensile strength and maximum strain increased with molecular weight approaching saturation values, demonstrating a plateau effect of molecular weight on physical properties. The novel TPEUs showed extensive degradation under hydrothermal ageing in water at 80° C. and achieved a tensile half-life in one day of immersion. The entirely lipid-derived TPEUs exhibited thermal and mechanical properties comparable to commercially available entirely petroleum-based analogues.