会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for computing three dimensional unsteady flows by solution of the vorticity equation on a Lagrangian mesh
    • 通过在拉格朗日网格上求解涡度方程来计算三维不稳定流的方法
    • US06424923B1
    • 2002-07-23
    • US09675894
    • 2000-09-29
    • Stephen A. HuyerJohn R. GrantJames S. UhlmanJeffrey S. Marshall
    • Stephen A. HuyerJohn R. GrantJames S. UhlmanJeffrey S. Marshall
    • G01F100
    • G01M9/06Y10T137/2065
    • A method for computing three dimensional unsteady flows about an object. An allowable error is established for the vorticity term calculations, and object geometry is provided giving surface points on an object and a region of interest. A mesh is established incorporating points on the object. Initial flow conditions are set at the surface. Vorticity values that will satisfy boundary conditions are set at the provided surface points. A new mesh is established incorporating the provided points and other points in the region of interest. Boxes are generated containing the provided points and other points. Velocities and pressures at each point are calculated from the flow conditions, vorticity values and boundary conditions., A time variable is incremented and each point is moved by applying the calculated velocity. Vorticity at each point is then recalculated. The method is iterated starting with the step of satisfying boundary conditions until the incremented time variable exceeds a predetermined value. satisfying boundary conditions until the incremented time variable exceeds a predetermined value.
    • 一种用于计算关于物体的三维不稳定流的方法。 为涡度项计算确定了一个允许的误差,并提供了物体几何形状,给出物体和感兴趣区域上的表面点。 建立了一个在物体上包含点的网格。 初始流量条件设置在表面。 满足边界条件的涡度值设定在提供的表面点。 建立一个新的网格,其中包含所提供的点和感兴趣区域中的其他点。 生成包含提供的点和其他点的框。 从流动条件,涡度值和边界条件计算每个点的速度和压力。时间变量递增,并且通过应用计算的速度移动每个点。 然后重新计算每个点的涡度。 该方法从满足边界条件的步骤开始迭代,直到递增时间变量超过预定值。 满足边界条件,直到递增时间变量超过预定值。
    • 2. 发明授权
    • Apparatus and method for predicting flow characteristics
    • 用于预测流量特性的装置和方法
    • US5544524A
    • 1996-08-13
    • US506583
    • 1995-07-20
    • Stephen A. HuyerJohn R. GrantJames S. Uhlman
    • Stephen A. HuyerJohn R. GrantJames S. Uhlman
    • B64C21/00G01P5/00G01M9/00
    • G01P5/001B64C21/00Y02T50/166
    • A method and apparatus for predicting flow over an object such as an air l or hydrofoil. The vortex strength for each of a plurality of vortex segments is obtained over an area of interest. The vortex segments are grouped into a series of square area defined by a series of boxes having different sizes. Initially a vortex strength is established for each of the smallest boxes and the coefficients then provide characteristic vortex strengths for a given box. The conversion of these vortex strengths into velocities is accomplished by directly computing the velocity of a given vorticity segment as influenced by all the vorticity segments in the box containing the given vorticity segment and the direct influence of each vortex segment in that box and any neighboring boxes. The influence of other vorticity segments outside the neighboring boxes is provided by using the influence of the average vortex strength of a given box or group of boxes. This approach significantly reduces the number of computations required to obtain the prediction.
    • 一种用于预测物体(例如气翼或水翼)上的流动的方法和装置。 在感兴趣的区域上获得多个涡流段中的每一个的涡流强度。 涡流段被分组成一系列由具有不同尺寸的一系列盒定义的正方形区域。 最初为每个最小的箱子建立涡流强度,然后系数为给定的箱子提供特征涡流强度。 将这些涡流强度转换为速度是通过直接计算给定涡度段的速度来实现的,该速度受包含给定涡度段的箱中所有涡度段的影响,以及该箱和任何相邻箱中每个涡流段的直接影响 。 通过使用给定盒子或一组盒子的平均涡流强度的影响,提供了相邻盒子之外的其他涡度片段的影响。 这种方法显着地减少了获得预测所需的计算次数。
    • 3. 发明授权
    • Non-linear axisymmetric potential flow boundary model for partially cavitating high speed bodies
    • 用于部分气蚀高速物体的非线性轴对称电位流动边界模型
    • US06865523B2
    • 2005-03-08
    • US09874306
    • 2001-06-07
    • Abraham N. VargheseJames S. Uhlman
    • Abraham N. VargheseJames S. Uhlman
    • B63B9/00F15D1/10G06G7/48G06G7/50
    • F15D1/10B63B9/002
    • A method for calculating parameters about an axisymmetric body in a cavity is provided. The user provides data describing the body, a cavity estimate, and convergence tolerances. Boundary element panels are distributed along the body and the estimated cavity. Matrices are initialized for each panel using disturbance potentials and boundary values. Disturbance potential matrices are formulated for each panel using disturbance potential equations and boundary conditions. The initialized matrices and the formulated matrices are solved for each boundary panel to obtain panel sources, dipoles and cavitation numbers. Forces and velocities are computed giving velocity and drag components. The cavity shape is updated by moving each panel in accordance with the calculated values. The method then tests for convergence against a tolerance, and iterates until convergence is achieved. Upon completion, parameters of interest and the cavity shape are provided. This invention also allows determiniation of cavity shape for a cavitation number.
    • 提供了一种用于计算空腔中的轴对称体的参数的方法。 用户提供描述身体的数据,腔体估计和收敛公差。 边界元件面板沿着身体和估计的腔体分布。 使用扰动电位和边界值对每个面板初始化矩阵。 使用扰动电位方程和边界条件为每个面板制定干扰电位矩阵。 为每个边界面板求解初始化矩阵和公式化矩阵,以获得面板源,偶极子和空化数。 计算出速度和阻力分量的力和速度。 通过根据计算值移动每个面板来更新空腔形状。 然后,该方法针对公差测试收敛,并且迭代直到达到收敛。 完成后,提供感兴趣的参数和腔体形状。 本发明还允许确定空化数的腔体形状。
    • 5. 发明授权
    • Device for stabilizing re-entrant cavity flows past high-speed underwater vehicles
    • 用于稳定入口腔流经高速水下航行器的装置
    • US07226325B1
    • 2007-06-05
    • US09832086
    • 2001-04-11
    • Ivan N. KirschnerJames S. Uhlman
    • Ivan N. KirschnerJames S. Uhlman
    • B63H11/00
    • B63B1/38Y02T70/122
    • A stabilizing device for a supercavitating vehicle that isolates re-entrant jet flows of liquid from its cavity. The device has a receiving means positioned on the supercavitating vehicle where the re-entrant jet flow impinges on the supercavitating vehicle. An exit means is joined to the receiving means for carrying the received re-entrant jet flow out of interference with the cavity. The exit means includes an exhaust nozzle joined to the aft of the supercavitating vehicle and a re-entrant jet nozzle positioned in communication between the receiving means and said exhaust nozzle transferring said received re-entrant jet flow into the exhaust nozzle. This stabilizes the cavity and improves controllability and maneuverability of the supercavitating vehicles while also reducing the gas ventilation required to maintain the cavity. Furthermore, this reduces self-generated noise allowing improved operation of acoustical sensors incorporated in the vehicle.
    • 一种用于超空化车辆的稳定装置,其隔离来自其空腔的液体的重入射流。 该装置具有位于超空化车辆上的接收装置,其中重入射流冲击超空化车辆。 出口装置连接到接收装置,用于承载所接收的重入射流不受腔的干扰。 出口装置包括连接到超空化车辆的后部的排气喷嘴和位于接收装置和所述排气喷嘴之间连通的入口喷嘴,所述排气喷嘴将所接收的重入喷射流传递到排气喷嘴中。 这就稳定了空腔,提高了超空化车辆的可控性和机动性,同时也减少了维持空腔所需的气体通风。 此外,这降低了自发噪声,从而改善了车辆中结合的声学传感器的运行。