会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Region-guided boundary refinement method
    • 区域引导边界细化方法
    • US07430320B2
    • 2008-09-30
    • US10998282
    • 2004-11-15
    • Shih-Jong J. LeeTuan Phan
    • Shih-Jong J. LeeTuan Phan
    • G06K9/34
    • G06K9/48G06K9/0014G06T7/13G06T7/149G06T7/181G06T2207/20036G06T2207/20156
    • A region-guided boundary refinement method for object segmentation in digital images receives an initial object regions of interest and performs directional boundary decomposition using the initial object regions of interest to generate a plurality of directional object boundaries output. A directional border search is performed using the plurality of directional object boundaries to generate base border points output. A base border integration is performed using the base border points to generate base borders output. In addition, a boundary completion is performed using the base borders having boundary refined object regions of interest output.A region-guided boundary completion method for object segmentation in digital images receives an initial object regions of interest and base borders. It performs boundary completion using the initial object regions of interest and the base borders to generate boundary refined object regions of interest output. The boundary completion method performs border growing using the base borders to generate grown borders output. A region guided connection is performed using the grown borders to generate connected borders output. A region guided merging is performed using the connected borders to generate fined object regions of interest output.
    • 用于数字图像中的对象分割的区域引导边界细化方法接收目标的初始对象区域,并使用感兴趣的初始对象区域进行方向边界分解,以生成多个方向对象边界输出。 使用多个方向对象边界执行方向边界搜索以生成基本边界点输出。 使用基本边界点执行基本边界集成以生成基本边框输出。 此外,使用具有兴趣输出的边界精细对象区域的基本边界来执行边界完成。 用于数字图像中的对象分割的区域引导边界完成方法接收感兴趣的初始对象区域和基本边界。 它使用感兴趣的初始对象区域和基本边界来执行边界完成,以生成兴趣输出的边界细化对象区域。 边界完成方法使用基础边框执行边界生长以生成成长边界输出。 使用生成的边界执行区域引导连接以生成连接的边界输出。 使用连接的边界来执行区域引导合并,以产生感兴趣的精细对象​​区域输出。
    • 8. 发明授权
    • Analysis of patterns among objects of a plurality of classes
    • 分析多个类的对象之间的模式
    • US07856136B2
    • 2010-12-21
    • US10828629
    • 2004-04-14
    • Shih-Jong J. LeeSamuel Alworth
    • Shih-Jong J. LeeSamuel Alworth
    • G06K9/00
    • G06T7/0012G06K9/00127G06T2207/30004
    • A method for the detection and analysis of patterns receives an image containing object labels and performs relational feature development using the input image to create at least one pattern map. It then performs relational feature analysis using the at least one pattern map to create a relational feature analysis result. The pattern detection and analysis method further comprises a recipe for automation control and includes determination of a genetic anomaly.A relational feature development method receives an image containing object labels and performs core measurement table development using the input image to create at least one core measurement table. It then performs feature table production using the at least one core measurement table to create at least one feature table. It also performs PatternMap creation using the at least one feature table to create a PatternMap. The relational feature development method further comprises a PatternMap integration and update step to create an updated PatternMap.A boundary distance measurement receives an image containing object labels and performs structure object mask production using the input image to create structure object mask. It then performs inner distance transform using the structure object mask to create inner distance transform image and finds individual object centroid using the input image to create individual object centroid output. In addition, it finds object boundary distance using the individual object centroid and the inner distance transform image to create object boundary distance output.
    • 用于检测和分析图案的方法接收包含对象标签的图像,并使用输入图像执行关系特征开发以创建至少一个模式图。 然后,使用至少一个模式图执行关系特征分析,以创建关系特征分析结果。 模式检测和分析方法还包括自动化控制的方案,并且包括遗传异常的确定。 关系特征开发方法接收包含对象标签的图像,并使用输入图像执行核心测量表开发,以创建至少一个核心测量表。 然后,使用至少一个核心测量表来执行特征表生成以创建至少一个特征表。 它还使用至少一个要素表创建PatternMap来创建PatternMap。 关系特征开发方法还包括PatternMap集成和更新步骤以创建更新的PatternMap。 边界距离测量接收包含对象标签的图像,并使用输入图像执行结构对象掩模生成,以创建结构对象掩码。 然后使用结构对象掩码进行内部距离变换,以创建内部距离变换图像,并使用输入图像找到单个对象中心,以创建单个对象质心输出。 此外,它使用单个对象中心和内部距离变换图像找到对象边界距离以创建对象边界距离输出。
    • 10. 发明授权
    • Intelligent spatial reasoning
    • 智能空间推理
    • US07263509B2
    • 2007-08-28
    • US10411437
    • 2003-04-09
    • Shih-Jong J. LeeSeho Oh
    • Shih-Jong J. LeeSeho Oh
    • G06F12/00G06N5/02
    • G06N5/04G06K9/342G06K9/4638G06N5/025G06N99/005
    • An intelligent spatial reasoning method receives a plurality of object sets. A spatial mapping feature learning method uses the plurality of object sets to create at least one salient spatial mapping feature output. It performs spatial reasoning rule learning using the at least one spatial mapping feature to create at least one spatial reasoning rule output. The spatial mapping feature learning method performs a spatial mapping feature set generation step followed by a feature learning step. The spatial mapping feature set is generated by repeated application of spatial correlation between two object sets. The feature learning method consists of a feature selection step and a feature transformation step and the spatial reasoning rule learning method uses the supervised learning method.The spatial reasoning approach of this invention automatically characterizes spatial relations of multiple sets of objects by comprehensive collections of spatial mapping features. Some of the features have clearly understandable physical, structural, or geometrical meanings. Others are statistical characterizations, which may not have clear physical, structural or geometrical meanings when considered individually. A combination of these features, however, could characterize subtle physical, structural or geometrical conditions under practical situations. One key advantage of this invention is the ability to characterize subtle differences numerically using a comprehensive feature set.
    • 智能空间推理方法接收多个对象集。 空间映射特征学习方法使用多个对象集来创建至少一个显着的空间映射特征输出。 它使用至少一个空间映射特征来执行空间推理规则学习以创建至少一个空间推理规则输出。 空间映射特征学习方法执行空间映射特征集生成步骤,随后是特征学习步骤。 通过重复应用两个对象集之间的空间相关性来生成空间映射特征集。 特征学习方法由特征选择步骤和特征变换步骤组成,空间推理规则学习方法采用监督学习方法。 本发明的空间推理方法通过空间映射特征的综合集合自动表征多组对象的空间关系。 一些功能具有明确的理解,物理,结构或几何意义。 其他是统计特征,当单独考虑时可能没有明确的物理,结构或几何意义。 然而,这些特征的组合可以在实际情况下表征微妙的物理,结构或几何条件。 本发明的一个关键优点是能够使用综合特征集在数值上表征微妙的差异。