会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Pressure regulation in a transcritical refrigerant cycle
    • 跨临界制冷剂循环中的压力调节
    • US20050193753A1
    • 2005-09-08
    • US10793489
    • 2004-03-04
    • Julio ConchaTobias SienelBryan EisenhowerYu Chen
    • Julio ConchaTobias SienelBryan EisenhowerYu Chen
    • F25B9/00F25B41/00F25B41/04F25B41/06
    • F25B9/008F25B41/062F25B2309/061F25B2339/047F25B2600/17F25B2600/2513F25B2700/1931F25B2700/2106F25B2700/21161
    • A refrigerant cycle is provided with a control for an expansion device to achieve a desired compressor discharge pressure. The system operates transcritically, such that greater freedom over compressor discharge pressure is provided. The system's efficiency is optimized by selecting an optimum discharge pressure. The optimum discharge pressure is selected based upon sensed environmental conditions, and the expansion device is adjusted to achieve the desired compressor discharge pressure. A feedback loop may be provided to sense the actual compressor discharge pressure and adjust the actual compressor discharge pressure by further refining the expansion device. The system is disclosed providing heated water based upon a demand for a particular hot water temperature. Further, the optimum discharge pressures may be determined experimentally, with an offset added to the experimentally determined value to ensure that the actual pressure is higher than the desired, or optimum pressure for the particular refrigerant cycle. In one embodiment, a formula is utilized to determine the optimum discharge pressure.
    • 制冷循环具有用于膨胀装置的控制以实现期望的压缩机排出压力。 该系统跨运行,从而提供了比压缩机排放压力更大的自由度。 通过选择最佳排放压力来优化系统的效率。 基于感测到的环境条件选择最佳排出压力,并且调节膨胀装置以实现期望的压缩机排出压力。 可以提供反馈回路以感测实际的压缩机排放压力,并通过进一步细化膨胀装置来调节实际的压缩机排放压力。 公开了该系统基于对特定热水温度的需求来提供加热的水。 此外,可以通过实验确定最佳排出压力,并将偏移量加到实验确定值上,以确保实际压力高于特定制冷剂循环的期望压力或最佳压力。 在一个实施例中,使用公式来确定最佳排出压力。
    • 8. 发明授权
    • Supercritical pressure regulation of vapor compression system by regulation of adaptive control
    • 通过调节自适应控制的蒸气压缩系统的超临界压力调节
    • US06813895B2
    • 2004-11-09
    • US10655970
    • 2003-09-05
    • Bryan EisenhowerChristopher G. ParkPengju KangAlan FinnTobias Sienel
    • Bryan EisenhowerChristopher G. ParkPengju KangAlan FinnTobias Sienel
    • F25B4900
    • G05D16/2066C08F2/46C09J4/00F25B9/008F25B49/02F25B2309/061F25B2600/17
    • A vapor compression system includes a compressor, a gas cooler, an expansion device, and an evaporator. Refrigerant is circulated through the closed circuit cycle. Preferably, carbon dioxide is used as the refrigerant. Adaptive control is employed to optimize the coefficient of performance of the vapor compression system. As the system changes over time, a model that operates the system is modified. The model is determined by an adaptive control algorithm including variable coefficients. As the model changes, the variables of the adaptive control algorithm change. A control of the gas cooler is then adjusted to regulate the high pressure of the system, and therefore the coefficient of performance. In a first example, Least Mean Squares (LMS) is used to modify the variables of the adaptive control algorithm to optimize the coefficient of performance. In a second example, the coefficient of performance is optimized by a slowly varying periodic excitation method. A third example employs triangularization to find the optimal coefficient of performance.
    • 蒸汽压缩系统包括压缩机,气体冷却器,膨胀装置和蒸发器。 制冷剂循环通过闭路循环。 优选使用二氧化碳作为制冷剂。 采用自适应控制来优化蒸气压缩系统的性能系数。 随着系统随时间的变化,操作系统的模型被修改。 该模型由包括可变系数的自适应控制算法确定。 随着模型的变化,自适应控制算法的变量发生变化。 然后调节气体冷却器的控制,以调节系统的高压,从而调节系统的性能。 在第一个例子中,最小均方(LMS)用于修改自适应控制算法的变量,以优化性能系数。 在第二个例子中,通过缓慢变化的周期激励方法来优化性能系数。 第三个例子使用三角化来找到最佳性能系数。