会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明授权
    • Multilevel transistor formation employing a local substrate formed
within a shallow trench
    • 使用在浅沟槽内形成的局部衬底的多晶体管形成
    • US6150695A
    • 2000-11-21
    • US741812
    • 1996-10-30
    • Mark GardnerDaniel KadoshDerick J. Wristers
    • Mark GardnerDaniel KadoshDerick J. Wristers
    • H01L21/822H01L27/06H01L27/01
    • H01L27/0688H01L21/8221
    • A dual level transistor and a fabrication technique. The dual level transistor is an integrated circuit in which a first transistor is formed on an upper surface of a global dielectric and a second transistor is formed on an upper surface of a first local substrate such that the second transistor is vertically displaced from the first transistor. The first local substrate is formed within a local trench etched into a first inter-substrate dielectric. By vertically displacing the first and second transistors, the lateral separation required to isolate first and second transistors in a typical single plane process is eliminated. The integrated circuit includes a semiconductor global substrate and a first transistor formed on the global substrate. The first transistor includes a first gate dielectric formed on an upper surface of the global substrate and a first conductive gate structure formed on an upper surface of the first dielectric. The integrated circuit further includes a first inter-substrate dielectric that is formed on the first conductive gate structure and the global substrate. The first inter-substrate dielectric includes a local trench. A first local substrate is formed within the local trench. A second transistor is located within the first local substrate. The second transistor includes a second gate dielectric formed on an upper surface of the first local substrate and a second conductive gate structure formed on an upper surface of the second gate dielectric.
    • 双级晶体管和制造技术。 双电平晶体管是集成电路,其中第一晶体管形成在全局电介质的上表面上,并且第二晶体管形成在第一局部衬底的上表面上,使得第二晶体管垂直从第一晶体管 。 第一局部衬底形成在蚀刻到第一衬底间电介质中的局部沟槽内。 通过垂直移位第一和第二晶体管,消除了在典型的单平面工艺中隔离第一和第二晶体管所需的横向分离。 集成电路包括半导体全局基板和形成在全局基板上的第一晶体管。 第一晶体管包括形成在全局衬底的上表面上的第一栅极电介质和形成在第一电介质的上表面上的第一导电栅极结构。 集成电路还包括形成在第一导电栅极结构和全局基板上的第一基板间电介质。 第一基板间电介质包括局部沟槽。 第一局部衬底形成在局部沟槽内。 第二晶体管位于第一局部衬底内。 第二晶体管包括形成在第一局部衬底的上表面上的第二栅极电介质和形成在第二栅极电介质的上表面上的第二导电栅极结构。
    • 9. 发明授权
    • Spacer formation by poly stack dopant profile design
    • 通过多层掺杂剂分布设计形成间隔物
    • US6159814A
    • 2000-12-12
    • US968444
    • 1997-11-12
    • Mark GardnerFred HauseCharles May
    • Mark GardnerFred HauseCharles May
    • H01L21/28H01L21/336H01L29/78
    • H01L21/28211H01L21/28052H01L21/28176H01L29/6659H01L29/7833
    • A method for forming a semiconductor device to produce graded doping in the source region and the drain region includes the steps of implanting the gate material, usually a polysilicon, with a dopant ion that varies the level of oxide formation on the gate. The dopant ion is driven into undoped polysilicon. Nitrogen ions, may also be implanted in the polysilicon to contain the previously implanted ions. For N-type transistors, typically arsenic is implanted. For P-type transistors, typically boron is implanted. Gates are formed. The gate structure is then oxidized. The oxidation process is controlled to grow a desired thickness of silicon dioxide on the gate. The portion of the gate carrying the dopant grows silicon dioxide either more quickly or more slowly. An isotropic etch can then used to remove a portion of the silicon oxide and form a knob on each sidewall of the gate. A heavy ion implant is then done to convert a portion of the lightly doped source region into a heavily doped region within the source region, and to convert a portion of the lightly doped drain region into a heavily doped region within the drain region. Some of the implanted ions are stopped by the knobs on the gate sidewalls. The regions under the knobs do not have as deep an ion implantation resulting in a shallow region beneath the knob. This forms a graded junction having a specific geometry. The geometry of the interface between the lightly doped region and the heavily doped region in the source region and the drain region depends on the geometry (thickness) of silicon dioxide knobs formed on the sidewall of the gate.
    • 用于形成在源极区域和漏极区域中产生渐变掺杂的半导体器件的方法包括以下步骤:通过改变栅极上的氧化物形成水平的掺杂剂离子注入栅极材料(通常为多晶硅)。 掺杂剂离子被驱入未掺杂的多晶硅。 氮离子也可以注入到多晶硅中以容纳先前注入的离子。 对于N型晶体管,通常植入砷。 对于P型晶体管,通常植入硼。 门形成。 然后将栅极结构氧化。 控制氧化过程以在栅极上生长所需的二氧化硅厚度。 携带掺杂剂的栅极部分会更快或更慢地生长二氧化硅。 然后可以使用各向同性蚀刻去除氧化硅的一部分并在栅极的每个侧壁上形成旋钮。 然后进行重离子注入以将轻掺杂源区的一部分转换为源区内的重掺杂区,并将轻掺杂漏区的一部分转换为漏区内的重掺杂区。 一些注入的离子被栅极侧壁上的旋钮阻挡。 旋钮下面的区域没有深度的离子注入,导致旋钮下方的浅区域。 这形成具有特定几何形状的渐变连接点。 源极区域和漏极区域中的轻掺杂区域和重掺杂区域之间的界面的几何形状取决于形成在栅极侧壁上的二氧化硅旋钮的几何形状(厚度)。