会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Live streaming video processing
    • 实时流视频处理
    • US08752112B2
    • 2014-06-10
    • US13445620
    • 2012-04-12
    • Charles Christian KrasicVijnan ShastriKrishna Kumar GadepalliYang XiaKrishnan EswaranWendy Tobagus
    • Charles Christian KrasicVijnan ShastriKrishna Kumar GadepalliYang XiaKrishnan EswaranWendy Tobagus
    • H04N21/234
    • H04N21/2187H04N21/234309H04N21/8456
    • Systems and methods for processing a live video stream are provided. An ingestion component receives segments of a live video stream in association with a request to process the live video stream. A control component generates an instruction graph for the live video stream based on predetermined criteria. The instruction graph defines a workflow for processing the live video stream, the workflow comprising a set of services for processing the segments. A transcoding component employs a subset of the services to process the segments based at least in part on the instruction graph and a distribution component then streams the segments to a device in response finishing process of the segments. With the live video processing system, segments of a video stream are processed and distributed as they are received. Thus segments of the video stream are processed and distributed prior to processing of the entire video stream.
    • 提供了用于处理直播视频流的系统和方法。 摄取组件与处理直播视频流的请求相关联地接收实况视频流的片段。 控制部件基于预定标准生成实时视频流的指令图。 指令图定义了用于处理直播视频流的工作流程,该工作流包括用于处理段的一组服务。 代码转换组件使用服务的子集来至少部分地基于指令图来处理段,然后分布组件在段的响应整理过程中将段流传送到设备。 使用实时视频处理系统,视频流的片段在被接收时被处理和分发。 因此,视频流的段在处理整个视频流之前被处理和分配。
    • 5. 发明授权
    • In-situ fabrication method for silicon solar cell
    • 硅太阳能电池的原位制造方法
    • US08871618B2
    • 2014-10-28
    • US13699739
    • 2010-09-08
    • Yang XiaBangwu LiuChaobo LiJie LiuMinggang WangYongtao Li
    • Yang XiaBangwu LiuChaobo LiJie LiuMinggang WangYongtao Li
    • H01L21/26H01L31/18C23C14/48H01L21/223
    • H01L31/18C23C14/48H01L21/2236H01L31/1804Y02E10/547Y02P70/521
    • An in-situ fabrication method for a silicon solar cell includes the following steps: pretreating a silicon chip; placing the pretreated silicon chip in an implantation chamber of a plasma immersion ion implantation machine; completing the preparation of black silicon via a plasma immersion ion implantation process; making a PN junction and forming a passivation layer on the black silicon; after making the PN junction and forming the passivation layer, removing the black silicon from the plasma immersion ion implantation machine; preparing a metal back electrode on the back of the black silicon; preparing a metal grid on the passivation layer; obtaining a solar cell after encapsulation. Said method enables black silicon preparation, PN junction preparation, and passivation layer formation in-situ, greatly reducing the amount of equipment needed for the preparation of solar cells and the preparation cost. In addition, the method is simple and easy to control.
    • 硅太阳能电池的原位制造方法包括以下步骤:预处理硅芯片; 将预处理的硅芯片放置在等离子体浸入式离子注入机的注入室中; 通过等离子体浸没离子注入工艺完成黑硅的制备; 制造PN结并在黑色硅上形成钝化层; 在形成PN结并形成钝化层之后,从等离子体浸入离子注入机中除去黑色硅; 在黑色硅的背面制备金属背电极; 在钝化层上制备金属网格; 封装后获得太阳能电池。 所述方法使黑硅制备,PN结制备和钝化层原位形成,大大减少了制备太阳能电池所需的设备量和制备成本。 另外,该方法简单易控。
    • 6. 发明申请
    • In-Situ Fabrication Method for Silicon Solar Cell
    • 硅太阳能电池的原位制造方法
    • US20130071965A1
    • 2013-03-21
    • US13699739
    • 2010-09-08
    • Yang XiaBangwu LiuChaobo LiJie LiuMinggang WangYongtao Li
    • Yang XiaBangwu LiuChaobo LiJie LiuMinggang WangYongtao Li
    • H01L31/18
    • H01L31/18C23C14/48H01L21/2236H01L31/1804Y02E10/547Y02P70/521
    • An in-situ fabrication method for a silicon solar cell includes the following steps: pretreating a silicon chip; placing the pretreated silicon chip in an implantation chamber of a plasma immersion ion implantation machine; completing the preparation of black silicon via a plasma immersion ion implantation process; making a PN junction and forming a passivation layer on the black silicon; after making the PN junction and forming the passivation layer, removing the black silicon from the plasma immersion ion implantation machine; preparing a metal back electrode on the back of the black silicon; preparing a metal grid on the passivation layer; obtaining a solar cell after encapsulation. Said method enables black silicon preparation, PN junction preparation, and passivation layer formation in-situ, greatly reducing the amount of equipment needed for the preparation of solar cells and the preparation cost. In addition, the method is simple and easy to control.
    • 硅太阳能电池的原位制造方法包括以下步骤:预处理硅芯片; 将预处理的硅芯片放置在等离子体浸入式离子注入机的注入室中; 通过等离子体浸没离子注入工艺完成黑硅的制备; 制造PN结并在黑色硅上形成钝化层; 在形成PN结并形成钝化层之后,从等离子体浸入离子注入机中除去黑色硅; 在黑色硅的背面制备金属背电极; 在钝化层上制备金属网格; 封装后获得太阳能电池。 所述方法使黑硅制备,PN结制备和钝化层原位形成,大大减少了制备太阳能电池所需的设备量和制备成本。 另外,该方法简单易控。
    • 8. 发明授权
    • Verification method for combinational loop systems
    • 组合回路系统的验证方法
    • US06816827B1
    • 2004-11-09
    • US09410087
    • 1999-10-01
    • Yang XiaPranav N. Ashar
    • Yang XiaPranav N. Ashar
    • G06F1750
    • G06F17/504
    • A design verification method for verifying hardware designs utilizing combinational loop logic. A design verification system is provided wherein a model checker receives both a mathematical representation of the functionality of a design and a set of properties against which the mathematical model is to be checked. If the design contains a combinational loop wherein the output directly depends on its own output and must be logically completed within a single bus cycle, then modifications to the model are undertaken. A minimal number of flip-flops are first added to the combinational loop in order to break up the combinational dependency. All of the states of a state machine model of the design are then supplemented with a twin state which is exactly the same as the original state. If the current state is an original state then the next cycle progresses the state machine to twin state of the particular original state. If the current state is a twin state, then the state machine progresses to the next new original state. Thus, by modifying the model in a generic straightforward manner, the design containing a combinational loop can be verified with currently available verification systems without requiring any modifications to the model checker itself.