会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • FRAMED TRANSDUCER DEVICE
    • 框架传动装置
    • US20110174074A1
    • 2011-07-21
    • US12688560
    • 2010-01-15
    • Gary G. LiTodd F. MillerLisa Z. Zhang
    • Gary G. LiTodd F. MillerLisa Z. Zhang
    • G01C19/56
    • G01C19/5755G01P15/125G01P2015/0814G01P2015/082
    • A MEMS device (20) includes a substrate (22), a proof mass (28), and a frame structure (30) laterally spaced apart from the proof mass (28). Compliant members (36) are coupled to the proof mass (28) and the frame structure (30) to retain the proof mass (28) suspended above the surface (26) of the substrate (22) without directly coupling the proof mass (28) to the substrate (22). Anchors (32) suspend the frame structure (30) above the surface (26) of the substrate (22) without directly coupling the structure (30) to the substrate (22), and retain the structure (30) immovable relative to the substrate (22) in a sense direction (42). The compliant members (36) enable movement of the proof mass (28) in the sense direction (42). Movable fingers (38) extending from the proof mass (28) are disposed between fixed fingers (46) extending from the frame structure (30) to form a differential capacitive structure.
    • MEMS装置(20)包括基板(22),检验质量块(28)和与证明块(28)横向间隔开的框架结构(30)。 合格构件(36)联接到校验块(28)和框架结构(30),以将悬挂在衬底(22)的表面(26)上方的校准质量块(28)保持在一起,而不直接将校验块(28 )到基板(22)。 锚固件(32)将框架结构(30)悬挂在衬底(22)的表面(26)上方,而不将结构(30)直接耦合到衬底(22),并且保持结构(30)相对于衬底不可移动 (22)在感测方向(42)上。 柔性构件(36)使检测质量块(28)能够在感测方向(42)上移动。 从防弹块(28)延伸的可动手指(38)设置在从框架结构(30)延伸的固定指状物(46)之间以形成差分电容结构。
    • 2. 发明申请
    • MEMS DEVICE WITH CENTRAL ANCHOR FOR STRESS ISOLATION
    • 具有中心锚杆的应力分离的MEMS装置
    • US20120262026A1
    • 2012-10-18
    • US13088579
    • 2011-04-18
    • Yizhen LinGary G. LiAndrew C. McNeilLisa Z. ZhangTodd F. Miller
    • Yizhen LinGary G. LiAndrew C. McNeilLisa Z. ZhangTodd F. Miller
    • H02N11/00
    • B81B3/0072B81B2203/0136B81B2203/0307
    • A MEMS device (20) includes a proof mass (32) coupled to and surrounding an immovable structure (30). The immovable structure (30) includes fixed fingers (36, 38) extending outwardly from a body (34) of the structure (30). The proof mass (32) includes movable fingers (60), each of which is disposed between a pair (62) of the fixed fingers (36, 38). A central area (42) of the body (34) is coupled to an underlying substrate (24), with the remainder of the immovable structure (30) and the proof mass (32) being suspended above the substrate (24) to largely isolate the MEMS device (20) from package stress, Additionally, the MEMS device (20) includes isolation trenches (80) and interconnects (46, 50, 64) so that the fixed fingers (36), the fixed fingers (38), and the movable fingers (60) are electrically isolated from one another to yield a differential device configuration.
    • MEMS装置(20)包括联接到并围绕不可移动结构(30)的检验质量块(32)。 不动结构(30)包括从结构(30)的主体(34)向外延伸的固定指状物(36,38)。 检测质量块(32)包括可动指状物(60),每个指状物设置在固定指状物(36,38)的一对(62)之间。 主体(34)的中心区域(42)联接到下面的基板(24),其中不可移动的结构(30)的其余部分和证明质量块(32)悬挂在基板(24)上方以大大隔离 另外,MEMS器件(20)包括隔离沟槽(80)和互连(46,50,64),使得固定指状物(36),固定指状物(38)和 可动指状物(60)彼此电隔离以产生差分装置构型。
    • 3. 发明授权
    • MEMS device with central anchor for stress isolation
    • 具有中心锚杆的MEMS器件用于应力隔离
    • US08610222B2
    • 2013-12-17
    • US13088579
    • 2011-04-18
    • Yizhen LinGary G. LiAndrew C. McNeilTodd F. MillerLisa Z. Zhang
    • Yizhen LinGary G. LiAndrew C. McNeilTodd F. MillerLisa Z. Zhang
    • H01L27/14
    • B81B3/0072B81B2203/0136B81B2203/0307
    • A MEMS device (20) includes a proof mass (32) coupled to and surrounding an immovable structure (30). The immovable structure (30) includes fixed fingers (36, 38) extending outwardly from a body (34) of the structure (30). The proof mass (32) includes movable fingers (60), each of which is disposed between a pair (62) of the fixed fingers (36, 38). A central area (42) of the body (34) is coupled to an underlying substrate (24), with the remainder of the immovable structure (30) and the proof mass (32) being suspended above the substrate (24) to largely isolate the MEMS device (20) from package stress, Additionally, the MEMS device (20) includes isolation trenches (80) and interconnects (46, 50, 64) so that the fixed fingers (36), the fixed fingers (38), and the movable fingers (60) are electrically isolated from one another to yield a differential device configuration.
    • MEMS装置(20)包括联接到并围绕不可移动结构(30)的检验质量块(32)。 不动结构(30)包括从结构(30)的主体(34)向外延伸的固定指状物(36,38)。 检测质量块(32)包括可动指状物(60),每个指状物设置在固定指状物(36,38)的一对(62)之间。 主体(34)的中心区域(42)联接到下面的基板(24),其中不可移动的结构(30)的其余部分和证明质量块(32)悬挂在基板(24)上方以大大隔离 另外,MEMS器件(20)包括隔离沟槽(80)和互连(46,50,64),使得固定指状物(36),固定指状物(38)和 可动指状物(60)彼此电隔离以产生差分装置构型。
    • 4. 发明授权
    • MEMS sensor with stress isolation and method of fabrication
    • 具有应力隔离的MEMS传感器和制造方法
    • US08925384B2
    • 2015-01-06
    • US13482332
    • 2012-05-29
    • Andrew C. McNeilGary G. LiLisa Z. ZhangYizhen Lin
    • Andrew C. McNeilGary G. LiLisa Z. ZhangYizhen Lin
    • G01P15/125
    • G01P15/125G01P15/0802G01P15/18G01P2015/0831
    • A MEMS sensor (20, 86) includes a support structure (26) suspended above a surface (28) of a substrate (24) and connected to the substrate (24) via spring elements (30, 32, 34). A proof mass (36) is suspended above the substrate (24) and is connected to the support structure (26) via torsional elements (38). Electrodes (42, 44), spaced apart from the proof mass (36), are connected to the support structure (26) and are suspended above the substrate (24). Suspension of the electrodes (42, 44) and proof mass (36) above the surface (28) of the substrate (24) via the support structure (26) substantially physically isolates the elements from deformation of the underlying substrate (24). Additionally, connection via the spring elements (30, 32, 34) result in the MEMS sensor (22, 86) being less susceptible to movement of the support structure (26) due to this deformation.
    • MEMS传感器(20,86)包括悬挂在基板(24)的表面(28)上方并通过弹簧元件(30,32,34)连接到基板(24)的支撑结构(26)。 证明物质(36)悬挂在基底(24)上方,并通过扭转元件(38)连接到支撑结构(26)。 与证明物质(36)间隔开的电极(42,44)连接到支撑结构(26)并悬挂在基底(24)上方。 通过支撑结构(26)将基片(24)的表面(28)上方的电极(42,44)和检验质量块(36)悬挂在基本上物理上隔离下面的基底(24)的变形。 此外,通过弹簧元件(30,32,34)的连接导致MEMS传感器(22,86)由于这种变形而不易受支撑结构(26)的移动的影响。
    • 5. 发明申请
    • INERTIAL SENSOR WITH OFF-AXIS SPRING SYSTEM
    • 具有偏轴弹簧系统的惯性传感器
    • US20130104651A1
    • 2013-05-02
    • US13282192
    • 2011-10-26
    • Gary G. LiYizhen LinAndrew C. McNeilLisa Z. Zhang
    • Gary G. LiYizhen LinAndrew C. McNeilLisa Z. Zhang
    • G01C19/56
    • G01C19/5747G01C19/5762
    • An inertial sensor (20) includes a drive mass (30) configured to undergo oscillatory motion and a sense mass (32) linked to the drive mass (30). On-axis torsion springs (58) are coupled to the sense mass (32), the on-axis torsion springs (58) being co-located with an axis of rotation (22). The inertial sensor (20) further includes an off-axis spring system (60). The off-axis spring system (60) includes off-axis springs (68, 70, 72, 74), each having a connection interface (76) coupled to the sense mass (32) at a location on the sense mass (32) that is displaced away from the axis of rotation (22). Together, the on-axis torsion springs (58) and the off-axis spring system (60) enable the sense mass (32) to oscillate out of plane about the axis of rotation (22) at a sense frequency that substantially matches a drive frequency of the drive mass (30).
    • 惯性传感器(20)包括构造成经历振荡运动的驱动质量块(30)和与驱动质量块(30)连接的感测质量块(32)。 轴上扭转弹簧(58)联接到感测质量块(32),所述轴上扭转弹簧(58)与旋转轴线(22)共同定位。 惯性传感器(20)还包括离轴弹簧系统(60)。 离轴弹簧系统(60)包括离轴弹簧(68,70,72,74),每个离轴弹簧具有在感测质量块(32)上的位置处耦合到感测质量块(32)的连接界面(76) 其远离旋转轴线(22)移位。 一起,轴上扭转弹簧(58)和离轴弹簧系统(60)使得感测质量(32)能够以基本匹配驱动器的感测频率围绕旋转轴线(22)摆动离开平面 驱动质量(30)的频率。
    • 6. 发明授权
    • Inertial sensor with off-axis spring system
    • 惯性传感器带离轴弹簧系统
    • US08739627B2
    • 2014-06-03
    • US13282192
    • 2011-10-26
    • Gary G. LiYizhen LinAndrew C. McNeilLisa Z. Zhang
    • Gary G. LiYizhen LinAndrew C. McNeilLisa Z. Zhang
    • G01C19/56
    • G01C19/5747G01C19/5762
    • An inertial sensor (20) includes a drive mass (30) configured to undergo oscillatory motion and a sense mass (32) linked to the drive mass (30). On-axis torsion springs (58) are coupled to the sense mass (32), the on-axis torsion springs (58) being co-located with an axis of rotation (22). The inertial sensor (20) further includes an off-axis spring system (60). The off-axis spring system (60) includes off-axis springs (68, 70, 72, 74), each having a connection interface (76) coupled to the sense mass (32) at a location on the sense mass (32) that is displaced away from the axis of rotation (22). Together, the on-axis torsion springs (58) and the off-axis spring system (60) enable the sense mass (32) to oscillate out of plane about the axis of rotation (22) at a sense frequency that substantially matches a drive frequency of the drive mass (30).
    • 惯性传感器(20)包括构造成经历振荡运动的驱动质量块(30)和与驱动质量块(30)连接的感测质量块(32)。 轴上扭转弹簧(58)联接到感测质量块(32),所述轴上扭转弹簧(58)与旋转轴线(22)共同定位。 惯性传感器(20)还包括离轴弹簧系统(60)。 离轴弹簧系统(60)包括离轴弹簧(68,70,72,74),每个离轴弹簧具有在感测质量块(32)上的位置处耦合到感测质量块(32)的连接界面(76) 其远离旋转轴线(22)移位。 一起,轴上扭转弹簧(58)和离轴弹簧系统(60)使得感测质量(32)能够以基本匹配驱动器的感测频率围绕旋转轴线(22)摆动离开平面 驱动质量(30)的频率。
    • 7. 发明申请
    • MEMS SENSOR WITH STRESS ISOLATION AND METHOD OF FABRICATION
    • 具有应力隔离的MEMS传感器和制造方法
    • US20130319117A1
    • 2013-12-05
    • US13482332
    • 2012-05-29
    • Andrew C. McNeilGary G. LiLisa Z. ZhangYizhen Lin
    • Andrew C. McNeilGary G. LiLisa Z. ZhangYizhen Lin
    • G01P15/125H01R43/00
    • G01P15/125G01P15/0802G01P15/18G01P2015/0831
    • A MEMS sensor (20, 86) includes a support structure (26) suspended above a surface (28) of a substrate (24) and connected to the substrate (24) via spring elements (30, 32, 34). A proof mass (36) is suspended above the substrate (24) and is connected to the support structure (26) via torsional elements (38). Electrodes (42, 44), spaced apart from the proof mass (36), are connected to the support structure (26) and are suspended above the substrate (24). Suspension of the electrodes (42, 44) and proof mass (36) above the surface (28) of the substrate (24) via the support structure (26) substantially physically isolates the elements from deformation of the underlying substrate (24). Additionally, connection via the spring elements (30, 32, 34) result in the MEMS sensor (22, 86) being less susceptible to movement of the support structure (26) due to this deformation.
    • MEMS传感器(20,86)包括悬挂在基板(24)的表面(28)上方并通过弹簧元件(30,32,34)连接到基板(24)的支撑结构(26)。 证明物质(36)悬挂在基底(24)上方,并通过扭转元件(38)连接到支撑结构(26)。 与证明物质(36)间隔开的电极(42,44)连接到支撑结构(26)并悬挂在基底(24)上方。 通过支撑结构(26)将基片(24)的表面(28)上方的电极(42,44)和检验质量块(36)悬挂在基本上物理上隔离下面的基底(24)的变形。 此外,通过弹簧元件(30,32,34)的连接导致MEMS传感器(22,86)由于这种变形而不易受支撑结构(26)的移动的影响。
    • 8. 发明授权
    • MEMS device having variable gap width and method of manufacture
    • 具有可变间隙宽度的MEMS器件和制造方法
    • US08927311B2
    • 2015-01-06
    • US13028930
    • 2011-02-16
    • Andrew C. McNeilYizhen LinLisa Z. Zhang
    • Andrew C. McNeilYizhen LinLisa Z. Zhang
    • B81B3/00G01P15/08G01P15/125
    • B81B3/0056B81B7/02B81B2201/0235B81B2203/058B81B2203/06G01P15/0802G01P15/125G01P2015/0831H01L21/6835H01L22/34H01L2924/1461Y10T29/49156
    • A MEMS device (40) includes a base structure (42) and a microstructure (44) suspended above the structure (42). The base structure (42) includes an oxide layer (50) formed on a substrate (48), a structural layer (54) formed on the oxide layer (50), and an insulating layer (56) formed over the structural layer (54). A sacrificial layer (112) is formed overlying the base structure (42), and the microstructure (44) is formed in another structural layer (116) over the sacrificial layer (112). Methodology (90) entails removing the sacrificial layer (112) and a portion of the oxide layer (50) to release the microstructure (44) and to expose a top surface (52) of the substrate (48). Following removal, a width (86) of a gap (80) produced between the microstructure (44) and the top surface (52) is greater than a width (88) of a gap (84) produced between the microstructure (44) and the structural layer (54).
    • MEMS器件(40)包括基部结构(42)和悬挂在结构(42)上方的微结构(44)。 基底结构(42)包括形成在基底(48)上的氧化物层(50),形成在氧化物层(50)上的结构层(54)和形成在结构层(54)上的绝缘层 )。 牺牲层(112)形成在基部结构(42)上方,并且微结构(44)形成在牺牲层(112)上方的另一个结构层(116)中。 方法(90)需要去除牺牲层(112)和氧化物层(50)的一部分以释放微结构(44)并暴露衬底(48)的顶表面(52)。 在移除之后,在微结构(44)和顶表面(52)之间产生的间隙(80)的宽度(86)大于在微结构(44)和微结构(44)之间产生的间隙(84)的宽度(88) 结构层(54)。
    • 9. 发明申请
    • MICROELECTROMECHANICAL DEVICE WITH ISOLATED MICROSTRUCTURES AND METHOD OF PRODUCING SAME
    • 具有隔离微结构的微电子器件及其制造方法
    • US20100155861A1
    • 2010-06-24
    • US12340202
    • 2008-12-19
    • Lisa Z. ZhangLisa H. KarlinRuben B. MontezWoo Tae Park
    • Lisa Z. ZhangLisa H. KarlinRuben B. MontezWoo Tae Park
    • H01L29/84H01L21/762
    • B81C1/00698
    • A microelectromechanical systems (MEMS) device (20) includes a polysilicon structural layer (46) having movable microstructures (28) formed therein and suspended above a substrate (22). Isolation trenches (56) extend through the layer (46) such that the microstructures (28) are laterally anchored to the isolation trenches (56). A sacrificial layer (22) is formed overlying the substrate (22), and the structural layer (46) is formed overlying the sacrificial layer (22). The isolation trenches (56) are formed by etching through the polysilicon structural layer (46) and depositing a nitride (72), such as silicon-rich nitride, in the trenches (56). The microstructures (28) are then formed in the structural layer (46), and electrical connections (30) are formed over the isolation trenches (56). The sacrificial layer (22) is subsequently removed to form the MEMS device (20) having the isolated microstructures (28) spaced apart from the substrate (22).
    • 微机电系统(MEMS)装置(20)包括多晶硅结构层(46),该多晶硅结构层(46)具有形成在其中的悬浮在衬底(22)上方的可移动微结构(28)。 绝缘沟槽(56)延伸穿过层(46),使得微结构(28)横向锚定到隔离沟槽(56)。 形成覆盖衬底(22)的牺牲层(22),并且覆盖牺牲层(22)上形成结构层(46)。 隔离沟槽(56)通过蚀刻穿过多晶硅结构层(46)并在沟槽(56)中沉积诸如富含硅的氮化物的氮化物(72)形成。 然后在结构层(46)中形成微结构(28),并且在隔离沟槽(56)上形成电连接(30)。 随后去除牺牲层(22)以形成具有与衬底(22)间隔开的隔离微结构(28)的MEMS器件(20)。
    • 10. 发明申请
    • MEMS DEVICE HAVING VARIABLE GAP WIDTH AND METHOD OF MANUFACTURE
    • 具有可变宽度宽度的MEMS器件及其制造方法
    • US20140260616A1
    • 2014-09-18
    • US14290297
    • 2014-05-29
    • Andrew C. McNeilYizhen LinLisa Z. Zhang
    • Andrew C. McNeilYizhen LinLisa Z. Zhang
    • G01P15/125B81B7/02G01P15/08
    • B81B3/0056B81B7/02B81B2201/0235B81B2203/058B81B2203/06G01P15/0802G01P15/125G01P2015/0831H01L21/6835H01L22/34H01L2924/1461Y10T29/49156
    • A MEMS device (40) includes a base structure (42) and a microstructure (44) suspended above the structure (42). The base structure (42) includes an oxide layer (50) formed on a substrate (48), a structural layer (54) formed on the oxide layer (50), and an insulating layer (56) formed over the structural layer (54). A sacrificial layer (112) is formed overlying the base structure (42), and the microstructure (44) is formed in another structural layer (116) over the sacrificial layer (112). Methodology (90) entails removing the sacrificial layer (112) and a portion of the oxide layer (50) to release the microstructure (44) and to expose a top surface (52) of the substrate (48). Following removal, a width (86) of a gap (80) produced between the microstructure (44) and the top surface (52) is greater than a width (88) of a gap (84) produced between the microstructure (44) and the structural layer (54).
    • MEMS器件(40)包括基部结构(42)和悬挂在结构(42)上方的微结构(44)。 基底结构(42)包括形成在基板(48)上的氧化物层(50),形成在氧化物层(50)上的结构层(54)和形成在结构层(54)上的绝缘层 )。 牺牲层(112)形成在基部结构(42)上方,并且微结构(44)形成在牺牲层(112)上方的另一个结构层(116)中。 方法(90)需要去除牺牲层(112)和氧化物层(50)的一部分以释放微结构(44)并暴露衬底(48)的顶表面(52)。 在移除之后,在微结构(44)和顶表面(52)之间产生的间隙(80)的宽度(86)大于在微结构(44)和微结构(44)之间产生的间隙(84)的宽度(88) 结构层(54)。