会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明申请
    • TUNNELING MAGNETORESISTIVE (TMR) READ HEAD WITH LOW MAGNETIC NOISE
    • TONNELING MAGNETORESISTIVE(TMR)阅读头与低磁性噪音
    • US20110043950A1
    • 2011-02-24
    • US12545776
    • 2009-08-21
    • Matthew J. CareyJeffrey R. ChildressStefan Maat
    • Matthew J. CareyJeffrey R. ChildressStefan Maat
    • G11B5/127
    • G11B5/3909B82Y10/00B82Y25/00G01R33/098G11B5/3906H01L43/08H01L43/10
    • A tunneling magnetoresistance (TMR) device, like a TMR read head for a magnetic recording disk drive, has low magnetic damping, and thus low mag-noise, as a result of the addition of a ferromagnetic backing layer to the ferromagnetic free layer. The backing layer is a material with a low Gilbert damping constant or parameter α, the well-known dimensionless coefficient in the Landau-Lifshitz-Gilbert equation. The backing layer may have a thickness such that it contributes up to two-thirds of the total moment/area of the combined free layer and backing layer. The backing layer may be formed of a material having a composition selected from (CoxFe(100-x))(100-y)Xy, (Co2Mn)(100-y)Xy and (Co2FexMn(1-x))(100-y)Xy, where X is selected from Ge, Al and Si, and (Co2Fe)(100-y)Aly, where y is in a range that results in a low damping constant for the material.
    • 隧道磁阻(TMR)器件,如磁记录盘驱动器的TMR读头,由于向铁磁性自由层添加铁磁背衬层,所以具有较低的磁阻尼,因而具有较低的磁场噪声。 背衬层是具有低吉尔伯特阻尼常数或参数α的材料,Landau-Lifshitz-Gilbert方程中众所周知的无量纲系数。 背衬层可以具有使得其贡献高达组合的自由层和背衬层的总矩/面积的三分之二的厚度。 背衬层可以由具有选自(CoxFe(100-x))(100-y)Xy,(Co2Mn)(100-y)Xy和(Co2FexMn(1-x))(100- y)Xy,其中X选自Ge,Al和Si,和(Co 2 Fe)(100-y)Aly,其中y在导致材料的阻尼常数低的范围内。
    • 8. 发明申请
    • MAGNETIC FIELD SENSING SYSTEM USING SPIN-TORQUE DIODE EFFECT
    • 使用旋转二极管效应的磁场感应系统
    • US20100033881A1
    • 2010-02-11
    • US12188183
    • 2008-08-07
    • Matthew J. CareyJeffrey R. ChildressStefan Maat
    • Matthew J. CareyJeffrey R. ChildressStefan Maat
    • G11B5/33
    • G11B5/3909B82Y10/00B82Y25/00G01R33/098G11B5/3932G11B2005/3996H01F10/3259H01F10/3286H03B15/006
    • A magnetic field sensing system with a current-perpendicular-to-the-plane (CPP) sensor, like that used for giant magnetoresistive (GMR) and tunneling magnetoresistive (TMR) spin-valve (SV) sensors, operates in a mode different from conventional GMR-SV and TMR-SV systems. An alternating-current (AC) source operates at a fixed selected frequency and directs AC perpendicularly through the layers of the CPP sensor, with the AC amplitude being high enough to deliberately induce a spin-torque in the CPP sensor's free layer. The AC-induced spin-torque at the selected frequency causes oscillations in the magnetization of the free layer that give rise to a DC voltage signal VDC. VDC is a direct result of only the oscillations induced in the free layer. The value of VDC will change in response to the magnitude of the external magnetic field being sensed and as the free layer is driven in and out of resonance with the AC. The DC voltage resulting from AC-induced spin-torque oscillations of the free layer magnetization represents the actual magnetoresistive signal.
    • 与用于巨磁阻(GMR)和隧道磁阻(TMR)自旋阀(SV)传感器的电流 - 垂直平面(CPP)传感器的磁场感测系统以不同于 常规GMR-SV和TMR-SV系统。 交流(AC)源以固定的选定频率工作,并直接通过CPP传感器的层引导AC,AC振幅足够高以故意诱导CPP传感器自由层中的自旋扭矩。 所选频率下的交流感应自旋转矩引起自由层的磁化振动,产生直流电压信号VDC。 VDC是仅在自由层中引起的振荡的直接结果。 VDC的值将响应于被感测的外部磁场的大小而变化,并且自由层被驱动进入和退出与AC谐振。 由自由层磁化的交流感应自旋转矩振荡产生的直流电压表示实际磁阻信号。