会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Multi-robot control interface
    • 多机器人控制界面
    • US08073564B2
    • 2011-12-06
    • US11428757
    • 2006-07-05
    • David J. BruemmerMiles C. Walton
    • David J. BruemmerMiles C. Walton
    • G06F19/00
    • G06N3/008G05B2219/39448G05D1/0027
    • Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.
    • 用于通过单个用户界面来控制多个机器人的方法和系统包括用于所述多个机器人中的每一个的至少一个机器人显示窗口,所述至少一个机器人显示窗口示出所述多个机器人中的相应一个机器人的一个或多个条件 。 所述用户界面还包括用于所述多个机器人中的每一个的至少一个机器人控制窗口,所述至少一个机器人控制窗口被配置为接收用于发送到所述多个机器人中的相应一个机器人的一个或多个命令。 用户界面还包括由从多个机器人中的每一个接收的信息组成的多机器人共用窗口。
    • 5. 发明申请
    • Multi-Robot Control Interface
    • 多机器人控制接口
    • US20080009969A1
    • 2008-01-10
    • US11428757
    • 2006-07-05
    • David J. BruemmerMiles C. Walton
    • David J. BruemmerMiles C. Walton
    • G06F19/00
    • G06N3/008G05B2219/39448G05D1/0027
    • Methods and system for controlling a plurality of robots through a single user interface includes at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of the respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.
    • 用于通过单个用户界面来控制多个机器人的方法和系统包括用于所述多个机器人中的每一个的至少一个机器人显示窗口,所述至少一个机器人显示窗口示出所述多个机器人中的相应一个机器人的一个或多个条件 。 所述用户界面还包括用于所述多个机器人中的每一个的至少一个机器人控制窗口,所述至少一个机器人控制窗口被配置为接收用于发送到所述多个机器人中的相应一个机器人的一个或多个命令。 用户界面还包括由从多个机器人中的每一个接收的信息组成的多机器人共用窗口。
    • 7. 发明授权
    • Vehicle management system
    • 车辆管理系统
    • US09053394B2
    • 2015-06-09
    • US13597911
    • 2012-08-29
    • David J. BruemmerR. Scott Hartley
    • David J. BruemmerR. Scott Hartley
    • G06F17/00B25J9/08G06K9/62G06K9/00G06F3/01
    • B25J9/1602B25J9/08B25J9/161B25J9/1633B25J9/1666B25J9/1684B25J9/1694B25J9/1697G01C21/34G06F3/016G06K9/00791G06K9/6293G06T11/206G08G1/22Y10S901/09Y10S901/10
    • A system and method to identify fuel consumption optimization based on reactive and deliberative components is described. Modifiable use conditions, such as speeding, excessive idling, gear selection, acceleration and deceleration profiles, which all represent opportunities for fuel savings, are identified and optimized for minimal fuel consumption based on a reactive interaction with the vehicle on a real-time basis. Deliberative analysis of historical data linked to a specific location or route is also conducted to arrive at a historical optimal fuel consumption profile. Similar historical fuel consumption profiles for the same route in question from other nearby vehicles are collected and analyzed to determined a more robust deliberative component of optimal fuel consumption. The reactive and deliberative components are optimized fuel consumption are merged to form a recommended profile for optimal fuel consumption.
    • 描述了基于反应和审议组件来识别燃料消耗优化的系统和方法。 基于与车辆的反应性交互实时地识别和优化用于节省燃料的机会的可更新的使用条件,例如超速,过度怠速,齿轮选择,加速和减速曲线,这些都代表燃料节省的机会。 还对特定位置或路线的历史数据进行了审议分析,以得出历史最优燃料消耗曲线。 收集和分析与其他附近车辆相同的相同路线的类似历史燃料消耗曲线,以确定更为有力的最佳燃油消耗的考虑因素。 反应和审议的组件被优化燃料消耗被合并以形成推荐的轮廓以获得最佳燃料消耗。
    • 8. 发明申请
    • Vehicle Management System
    • 车辆管理系统
    • US20130054125A1
    • 2013-02-28
    • US13597911
    • 2012-08-29
    • David J. BruemmerR. Scott Hartley
    • David J. BruemmerR. Scott Hartley
    • G06F17/00
    • B25J9/1602B25J9/08B25J9/161B25J9/1633B25J9/1666B25J9/1684B25J9/1694B25J9/1697G01C21/34G06F3/016G06K9/00791G06K9/6293G06T11/206G08G1/22Y10S901/09Y10S901/10
    • A system and method to identify fuel consumption optimization based on reactive and deliberative components is described. Modifiable use conditions, such as speeding, excessive idling, gear selection, acceleration and deceleration profiles, which all represent opportunities for fuel savings, are identified and optimized for minimal fuel consumption based on a reactive interaction with the vehicle on a real-time basis. Deliberative analysis of historical data linked to a specific location or route is also conducted to arrive at a historical optimal fuel consumption profile. Similar historical fuel consumption profiles for the same route in question from other nearby vehicles are collected and analyzed to determined a more robust deliberative component of optimal fuel consumption. The reactive and deliberative components are optimized fuel consumption are merged to form a recommended profile for optimal fuel consumption.
    • 描述了基于反应和审议组件来识别燃料消耗优化的系统和方法。 基于与车辆的反应性交互实时地识别和优化用于节省燃料的机会的可更新的使用条件,例如超速,过度怠速,齿轮选择,加速和减速曲线,这些都代表燃料节省的机会。 还对特定位置或路线的历史数据进行了审议分析,以得出历史最优燃料消耗曲线。 收集和分析与其他附近车辆相同的相同路线的类似历史燃料消耗曲线,以确定更为有力的最佳燃油消耗的考虑因素。 反应和审议的组件被优化燃料消耗被合并以形成推荐的轮廓以获得最佳燃料消耗。
    • 9. 发明授权
    • Autonomous navigation system and method
    • 自主导航系统及方法
    • US07587260B2
    • 2009-09-08
    • US11428637
    • 2006-07-05
    • David J. BruemmerDouglas A. Few
    • David J. BruemmerDouglas A. Few
    • G05B19/18
    • G06N3/008G05D1/0088G05D2201/0209
    • A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.
    • 机器人平台包括感知器,运动器和系统控制器,其执行用于自动导航机器人的指令。 指令在每次通过事件定时循环的迭代中重复,基于机器人的当前速度来定义事件范围的行为,检测机器人周围的障碍物的范围,通过确定是否存在障碍物的范围来测试事件水平入侵 在事件范围内,并相应调整机器人的旋转和平移速度。 如果发生事件地平线入侵,旋转速度被当前旋转速度的一部分减小到最近障碍物的一个比例范围,并且平移速度被改变为距离最近的障碍物的范围的比例。 如果没有发生事件地平线入侵,平移速度被设置为速度因子相对于最大速度的比率。