会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Anti-scatter grid and collimator designs, and their motion, fabrication and assembly
    • 防散射网格和准直器设计,以及它们的运动,制造和组装
    • US20080088059A1
    • 2008-04-17
    • US11984634
    • 2007-11-20
    • Cha-Mei TangOlga MakarovaPlatte AmstutzGuohua Yang
    • Cha-Mei TangOlga MakarovaPlatte AmstutzGuohua Yang
    • B29C39/10B29C69/00B29C70/84
    • G21K1/025
    • Grids and collimators, for use with electromagnetic energy emitting devices, include at least a metal layer that is formed, for example, by electroplating/electroforming or casting. The metal layer includes top and bottom surfaces, and a plurality of solid integrated walls. Each of the solid integrated walls extends from the top to bottom surface and has a plurality of side surfaces. The side surfaces of the solid integrated walls are arranged to define a plurality of openings extending entirely through the layer. At least some of the walls also can include projections extending into the respective openings formed by the walls. The projections can be of various shapes and sizes, and are arranged so that a total amount of wall material intersected by a line propagating in a direction along an edge of the grid is substantially the same as another total amount of wall material intersected by another line propagating in another direction substantially parallel to the edge of the grid at any distance from the edge. Methods to fabricate these grids using copper, lead, nickel, gold, any other electroplating/electroforming materials, metal composites or low melting temperature metals are described.
    • 用于电磁能发射装置的栅格和准直器至少包括通过例如电镀/电铸或铸造形成的金属层。 金属层包括顶表面和底表面,以及多个固体整​​体壁。 每个固体一体化壁从顶部到底部表面延伸并且具有多个侧表面。 固体一体化壁的侧表面布置成限定完全延伸穿过该层的多个开口。 至少一些壁还可以包括延伸到由壁形成的相应开口中的突起。 突起可以是各种形状和尺寸,并且被布置成使得沿着沿着栅格的边缘的方向传播的线相交的壁材的总量基本上与另一个与另一条线相交的壁材料的总量相同 在距离边缘任何距离处基本上平行于栅格的边缘的另一方向上传播。 描述了使用铜,铅,镍,金,任何其它电镀/电铸材料,金属复合材料或低熔点金属制造这些栅极的方法。
    • 2. 发明申请
    • Flow-through chemical and biological sensor
    • 流通化学和生物传感器
    • US20060068490A1
    • 2006-03-30
    • US11073430
    • 2005-03-04
    • Cha-Mei TangPlatte Amstutz
    • Cha-Mei TangPlatte Amstutz
    • C12M1/34
    • G01N21/05B01F5/0603B01F5/0646B01F5/0647B01F13/0059B01L3/502715B01L2300/0654B01L2300/0861B01L2300/0867B01L2300/0877B01L2400/086B82Y15/00B82Y30/00G01N33/54373G01N2021/0346
    • The invention provides a mixing flow apparatus. The mixing flow apparatus consists of a waveguide and a mixing flow chamber; the waveguide having a higher index of refraction material than its surroundings for propagation of a signal, and the mixing flow chamber having a body forming a flow chamber with an inlet, an outlet, a radiation transmissive wall and a surface positioned to disrupt flow regularity of a sample fluid, the body of the mixing flow chamber surrounding at least a portion of the waveguide, wherein constituents of a sample fluid entering the inlet are mixed by disruption of sample fluid flow regularity prior to discharge at the outlet. Also provided is a detection apparatus. The detection apparatus consists of a waveguide, a mixing flow chamber and a radiation detector; the waveguide having a higher index of refraction material than its surroundings for propagation of a signal; the mixing flow chamber having a body forming a flow chamber with an inlet, an outlet, a radiation transmissive wall and a surface positioned to disrupt flow regularity of a sample fluid, the body of the mixing flow chamber surrounding at least a portion of the waveguide, wherein constituents of a sample fluid entering the inlet are mixed by disruption of sample fluid flow regularity prior to discharge at the outlet, and the radiation detector being disposed facing the direction of oncoming propagated signal from the waveguide. The detection apparatus can include an illumination source.
    • 本发明提供一种混合流动装置。 混合流动装置由波导和混合流动室构成; 所述波导具有比其周围的更高的折射率折射材料以传播信号,并且所述混合流动室具有形成流动室的主体,所述主体具有入口,出口,辐射透射壁和定位成破坏流动规则性的表面 样品流体,混合流动室的主体围绕波导的至少一部分,其中进入入口的样品流体的组分通过在出口排放之前破坏样品流体流动规则性而混合。 还提供了检测装置。 检测装置由波导管,混合流室和放射线检测器构成, 波导具有比其周围更高的折射材料折射率以传播信号; 所述混合流动室具有形成具有入口,出口,辐射透射壁和定位成破坏样品流体的流动规则的流动室的主体,所述混合流动室的主体围绕所述波导的至少一部分 其中进入入口的样品流体的组分通过在出口处排出之前破坏样品流体流动规则性而被混合,并且辐射检测器被布置为面对来自波导的迎面传播信号的方向。 检测装置可以包括照明源。
    • 6. 发明授权
    • Anti-scatter grid and collimator designs, and their motion, fabrication and assembly
    • 防散射网格和准直器设计,以及它们的运动,制造和组装
    • US07922923B2
    • 2011-04-12
    • US11984634
    • 2007-11-20
    • Cha-Mei TangOlga V. MakarovaPlatte T. Amstutz, IIIGuohua Yang
    • Cha-Mei TangOlga V. MakarovaPlatte T. Amstutz, IIIGuohua Yang
    • B44C1/22C03C15/00C03C25/68
    • G21K1/025
    • Grids and collimators, for use with electromagnetic energy emitting devices, include at least a metal layer that is formed, for example, by electroplating/electroforming or casting. The metal layer includes top and bottom surfaces, and a plurality of solid integrated walls. Each of the solid integrated walls extends from the top to bottom surface and has a plurality of side surfaces. The side surfaces of the solid integrated walls are arranged to define a plurality of openings extending entirely through the layer. At least some of the walls also can include projections extending into the respective openings formed by the walls. The projections can be of various shapes and sizes, and are arranged so that a total amount of wall material intersected by a line propagating in a direction along an edge of the grid is substantially the same as another total amount of wall material intersected by another line propagating in another direction substantially parallel to the edge of the grid at any distance from the edge. Methods to fabricate these grids using copper, lead, nickel, gold, any other electroplating/electroforming materials, metal composites or low melting temperature metals are described.
    • 用于电磁能发射装置的网格和准直器至少包括通过例如电镀/电铸或铸造形成的金属层。 金属层包括顶表面和底表面,以及多个固体整​​体壁。 每个固体一体化壁从顶部到底部表面延伸并且具有多个侧表面。 固体一体化壁的侧表面布置成限定完全延伸穿过该层的多个开口。 至少一些壁还可以包括延伸到由壁形成的相应开口中的突起。 突起可以是各种形状和尺寸,并且被布置成使得沿着沿着栅格的边缘的方向传播的线相交的壁材的总量基本上与另一个与另一条线相交的壁材料的总量相同 在距离边缘任何距离处基本上平行于栅格的边缘的另一方向上传播。 描述了使用铜,铅,镍,金,任何其它电镀/电铸材料,金属复合材料或低熔点金属制造这些栅极的方法。
    • 9. 发明授权
    • Method and apparatus for obtaining high-resolution digital X-ray and gamma ray images
    • US06272207B1
    • 2001-08-07
    • US09251737
    • 1999-02-18
    • Cha-Mei Tang
    • Cha-Mei Tang
    • G21K102
    • G21K1/025
    • An apparatus and method for obtaining a high-resolution digital image of an object or objects irradiated with radiation having a wavelength in the x-ray or gamma ray spectrum generated by a radiation source, or of an object or objects emitting radiation within the x-ray or gamma ray spectrum. The apparatus comprises a detector matrix and a radiation mask. The detector matrix comprises a plurality of detector pixels, each comprising a detection surface having a respective surface area which generates a signal in response to an energy stimulus. The radiation mask has an opaque portion, and a plurality of apertures. The aperture size and position relative to the detector array determines the image resolution not the size of the detector pixels. The mask is positioned between the detector matrix and the radiation source, such that the opaque portion prevents portions of the radiation from passing through the mask, and each of the apertures permits a portion of the radiation which has passed through or has been emitted from a respective portion of the object to propagate onto an area of the detection surface, less than the surface area, of a respective one of the detector pixels. The signal from a large detector pixel or from a group of small detector pixels represent an image of the respective portion of the object. The detector matrix and radiation mask are moved in synchronism in relation to the object to enable the areas of the detection surfaces of the detector pixels to receive portions of the radiation propagating through or emitted from other portions of the object, and to output signals representative of those other portions. These steps of moving the detector pixels and mask and irradiating the object are repeated until digital images of all portions of the object have been obtained. Alternatively, the x-ray source can be moved to image all portions of the object. The images are then arranged into an image representative of the entire object.
    • 10. 发明授权
    • Gated field-emitters with integrated planar lenses
    • 具有集成平面透镜的门控场发射器
    • US5793152A
    • 1998-08-11
    • US161667
    • 1993-12-03
    • Cha-Mei TangThomas A. Swyden
    • Cha-Mei TangThomas A. Swyden
    • H01J3/02H01J19/24
    • H01J3/022
    • The present invention is a device for producing collimated electron beams. The device comprises a gated field emission array having at least one emission tip and a grid electrode having a grid opening disposed above the emission tip in a first direction. The device also comprises an integrated planar lens electrode for producing a focusing effect on electron beams emitted by the emission tip. The planar lens electrode has a lens edge disposed aside at a distance from the grid opening in a second direction perpendicular to the first direction. Preferably, the planar lens electrode is an integrated layer with the gated field emission array on a substrate. The grid electrode and the lens electrode can be on the same layer and separated by a gap of vacuum. The planar lens electrode can be above the grid electrode, separated by an insulative material. Similarly, the planar lens electrode can be below the grid electrode, and separated by an insulator material. Sometimes, the base electrode on which the tips are formed can act as a lens.
    • 本发明是一种用于产生准直电子束的装置。 该装置包括具有至少一个发射尖端的栅控场发射阵列和在第一方向上布置在发射尖端上方的格栅的栅格电极。 该装置还包括用于产生对由发射尖端发射的电子束的聚焦效果的集成平面透镜电极。 平面透镜电极具有在垂直于第一方向的第二方向上与栅格开口一定距离的透镜边缘。 优选地,平面透镜电极是在基板上具有门控场致发射阵列的集成层。 栅格电极和透镜电极可以在同一层上,并通过真空间隙分离。 平面透镜电极可以在栅电极之上,由绝缘材料隔开。 类似地,平面透镜电极可以在栅电极之下,并被绝缘体材料分隔开。 有时,其上形成尖端的基极可以用作透镜。