会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Projected gimbal point drive
    • 投影万向节点驱动
    • US06808443B2
    • 2004-10-26
    • US09877459
    • 2001-06-07
    • David G. Halley
    • David G. Halley
    • B24B100
    • B24B37/30B24B41/047B24B47/10
    • A projected gimbal point drive system is disclosed. The projected gimbal point drive system includes a spindle capable of apply a torque, and having a concave spherical surface formed on its lower portion. Further included is a wafer carrier disposed partially within the lower portion of the spindle. The wafer carrier has a convex spherical surface formed on a surface opposite the concave spherical surface of the spindle. In addition, a drive cup is included that is disposed between the spindle and the wafer carrier. The drive cup has a concave inner surface and a convex outer surface, and allows the wafer carrier to be tilted about a predefined gimbal point. In this manner, torque can be applied without affecting the gimbal action.
    • 公开了一种投影云台点驱动系统。 投影万向节驱动系统包括能够施加扭矩的主轴,并且在其下部形成有凹形的球形表面。 还包括一部分位于主轴的下部内的晶片载体。 晶片载体具有形成在与主轴的凹形球面相对的表面上的凸形球形表面。 此外,包括设置在主轴和晶片载体之间的驱动杯。 驱动杯具有凹的内表面和凸的外表面,并且允许晶片载体围绕预定义的万向节点倾斜。 以这种方式,可以施加扭矩而不影响万向动作。
    • 3. 发明授权
    • Feature height measurement during CMP
    • CMP期间的特征高度测量
    • US06629874B1
    • 2003-10-07
    • US09699290
    • 2000-10-26
    • David G. Halley
    • David G. Halley
    • B24B4900
    • B24B37/013B24B9/065B24B37/04B24B37/042B24B37/30B24B49/02B24B49/12B24B53/017B24B57/02
    • Embodiments of the present invention provide a chemical-mechanical planarization method for planarizing a wafer. The method comprises polishing a surface of the wafer to be planarized, and optically measuring feature heights of features on the surface of the wafer to obtain measurement data during said polishing of the surface. In some embodiments, the feature heights are measured by directing incident light at the surface of the wafer and observing a reflected light intensity of light reflected from the surface. In specific embodiments, the method includes adjusting, in real time, parameters controlling said polishing of the surface in response to the measurement data. The parameters may include a spinning speed of the polishing pad used to polish the surface, an orbiting speed of the polishing pad, a rotational speed of the wafer, a position of the polishing pad, a force between the polishing pad and the object, or the like.
    • 本发明的实施例提供了一种用于平坦化晶片的化学机械平面化方法。 该方法包括抛光要平坦化的晶片的表面,以及光学测量晶片表面上的特征的特征高度,以在所述表面抛光期间获得测量数据。 在一些实施例中,通过将晶片的表面处的入射光引导并观察从表面反射的光的反射光强度来测量特征高度。 在具体实施例中,该方法包括实时调整响应于测量数据控制表面抛光的参数。 这些参数可以包括用于抛光表面的抛光垫的旋转速度,抛光垫的旋转速度,晶片的旋转速度,抛光垫的位置,抛光垫和物体之间的力,或者 类似。
    • 5. 发明授权
    • In situ feature height measurement
    • 原位特征高度测量
    • US06976901B1
    • 2005-12-20
    • US10681047
    • 2003-10-07
    • David G. HalleyGreg Barbour
    • David G. HalleyGreg Barbour
    • B24B37/04B24B49/00
    • B24B37/04
    • Embodiments of the invention provide methods and apparatus for in situ feature height measurement of an object being planarized. In one embodiment, a method of planarizing an object comprises polishing a surface of the object to be planarized using a polishing pad having a cavity; and directing an incident light from the cavity of the polishing pad to optically measure feature heights of surface features on the surface of the object to obtain measurement data during the polishing of the surface using the polishing pad. The feature heights are relative height differences of the features measured by directing the incident light at the surface of the object from the cavity and observing a reflected light intensity of a reflected light from the features on the surface to the cavity.
    • 本发明的实施例提供了用于正被平坦化的物体的原位特征高度测量的方法和装置。 在一个实施例中,平面化物体的方法包括使用具有空腔的抛光垫来抛光要平坦化的物体的表面; 并且引导来自抛光垫的空腔的入射光以光学地测量物体表面上的表面特征的特征高度,以在使用抛光垫抛光表面期间获得测量数据。 特征高度是通过将来自空腔的物体表面处的入射光引导而测量的特征的相对高度差,并且观察从表面上的特征到空腔的反射光的反射光强度。
    • 6. 发明授权
    • Device for supporting thin semiconductor wafers
    • 用于支撑薄半导体晶片的装置
    • US06885206B2
    • 2005-04-26
    • US10365081
    • 2003-02-11
    • David G. Halley
    • David G. Halley
    • G01R1/04
    • G01R1/0416
    • A device for supporting and securing thin wafers comprising a housing having an upper shelf extending radially inwardly from the housing and a lower shelf extending radially inwardly from the upper shelf. An upper seal is disposed within the upper shelf and an inspection windowpane is disposed within the lower shelf. A vacuum is provided between the inspection windowpane and the upper seal to secure the wafer to the inspection windowpane and to secure the inspection windowpane to the housing. A ring-shaped frame assembly may further support and secure the wafer.
    • 一种用于支撑和固定薄晶片的装置,包括具有从外壳径向向内延伸的上搁板的外壳和从上搁板径向向内延伸的下搁板。 上部密封件设置在上部搁板内,检查窗玻璃设置在下部搁板内。 在检查窗玻璃和上密封件之间提供真空以将晶片固定到检查窗玻璃上并将检查窗玻璃固定到壳体。 环形框架组件可以进一步支撑并固定晶片。
    • 8. 发明授权
    • Wafer support for chemical mechanical planarization
    • 晶片支持化学机械平面化
    • US06379235B1
    • 2002-04-30
    • US09699289
    • 2000-10-26
    • David G. Halley
    • David G. Halley
    • B24B500
    • B24B37/30B24B9/065B24B37/013B24B37/04B24B37/042B24B49/02B24B49/12B24B53/017B24B57/02H01L21/68728
    • The present invention provides an improved planarization apparatus for chemical mechanical planarization. In an exemplary embodiment, the invention provides an apparatus having a back support operatively coupled to the edge support, the back support having at least one surface for supporting a back side of the object during planarization. The surface for supporting the back side provides a substantially friction free interface between the surface and the back side of the object to allow the object to move across the surface of the back support. In some embodiments, an edge support is movably coupled to an edge of an object for supporting and positioning the object during planarization.
    • 本发明提供一种用于化学机械平面化的改进的平面化装置。 在一个示例性实施例中,本发明提供一种具有可操作地耦合到边缘支撑件的后支撑件的装置,所述后支撑件具有用于在平坦化期间支撑物体的后侧的至少一个表面。 用于支撑背面的表面在物体的表面和背面之间提供基本上无摩擦的界面,以允许物体移动穿过背部支撑件的表面。 在一些实施例中,边缘支撑件可移动地联接到物体的边缘,用于在平坦化期间支撑和定位物体。