会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Oxygen assisted ohmic contact formation to n-type gallium arsenide
    • 氧辅助欧姆接触形成到n型砷化镓
    • US5358899A
    • 1994-10-25
    • US193968
    • 1994-02-09
    • Aaron J. FleischmanNaftali E. LustigRobert G. Schad
    • Aaron J. FleischmanNaftali E. LustigRobert G. Schad
    • H01L21/28H01L21/285H01L29/43H01L29/45H01L21/44
    • H01L29/452H01L21/28575
    • This invention describes a low resistance contact structure to n-type GaAs and a method for making such a contact structure. The contact structure is formed by depositing successive layers of Ni, Au, Ge, and Ni. A fifth layer is then deposited on the first four layers. The fifth layer is a metallic tungsten oxide. The metallic tungsten oxide is formed by sputtering tungsten onto the 4 layer stack in a low pressure argon plus oxygen atmosphere. The resulting 5 layer stack is then annealed in a rapid thermal anneal (RTA) process. The RTA process heats the stack for 5 seconds at 600 degrees. The resulting structure consists of an intermetallic NiGe compound having a small amount of a AuGa compound dispersed within it and being covered by a metallic tungsten oxide film. The oxygen from the metallic tungsten oxide film acts as a gettering mechanism to create gallium vacancies in the GaAs lattice structure during the RTA process. The oxygen forms a compound with gallium which is sandwiched between the metallic tungsten layer and the NiGe metallurgy. The sheet resistance of the contact metallurgy is low because the metallic tungsten oxide film is substantially thicker than that required to provide oxygen for the gettering process. The contact resistance to the n-type GaAs is low because the oxygen acts in a similar fashion to gold and creates more gallium vacancies in the GaAs. These vacancies are filled with an n-type dopant (Ge), supplied by the contact metallurgy, to create a better ohmic contact. The contact structure is reliable because there is a low gold content in the contact and because the nickel stabilizes the germanium which is not used for filling the gallium vacancies in the GaAs lattice.
    • 本发明描述了对n型GaAs的低电阻接触结构和制造这种接触结构的方法。 接触结构通过沉积Ni,Au,Ge和Ni的连续层而形成。 然后将第五层沉积在前四层上。 第五层是金属氧化钨。 通过在低压氩气和氧气气氛中将钨溅射到4层叠层上形成金属氧化钨。 然后将所得的5层堆叠在快速热退火(RTA)工艺中退火。 RTA过程以600度加热堆叠5秒钟。 所得结构由具有少量分散在其内并由金属氧化钨膜覆盖的AuGa化合物的金属间NiGe化合物组成。 来自金属氧化钨膜的氧气作为吸气机制,在RTA工艺期间产生GaAs晶格结构中的镓空位。 氧气与金属钨层和NiGe冶金之间形成与镓的化合物。 接触冶金的薄层电阻低,因为金属氧化钨薄膜比为吸气过程提供氧气所需的金属氧化物薄膜要厚。 对n型GaAs的接触电阻很低,因为氧以与金类似的方式起作用,并在GaAs中产生更多的镓空位。 这些空位填充有由接触冶金提供的n型掺杂剂(Ge),以产生更好的欧姆接触。 接触结构是可靠的,因为接触中的金含量低,并且因为镍使不稳定锗不能用于填充GaAs晶格中的镓空位。
    • 2. 发明授权
    • Oxygen assisted ohmic contact formation to N-type gallium arsenide
    • 氧辅助欧姆接触形成N型砷化镓
    • US5317190A
    • 1994-05-31
    • US782683
    • 1991-10-25
    • Aaron J. FleischmanNaftali E. LustigRobert G. Schad
    • Aaron J. FleischmanNaftali E. LustigRobert G. Schad
    • H01L21/28H01L21/285H01L29/43H01L29/45H01L29/400
    • H01L29/452H01L21/28575
    • This invention describes a low resistance contact structure to n-type GaAs and a method for making such a contact structure. The contact structure is formed by depositing successive layers of Ni, Au, Ge, and Ni. A fifth layer is then deposited on the first four layers. The fifth layer is a metallic tungsten oxide. The metallic tungsten oxide is formed by sputtering tungsten onto the 4 layer stack in a low pressure argon plus oxygen atmosphere. The resulting 5 layer stack is then annealed in a rapid thermal anneal (RTA) process. The RTA process heats the stack for 5 seconds at 600 degrees. The resulting structure consists of an intermetallic NiGe compound having a small amount of a AuGa compound dispersed within it and being covered by a metallic tungsten oxide film. The oxygen from the metallic tungsten oxide film acts as a gettering mechanism to create gallium vacancies in the GaAs lattice structure during the RTA process. The oxygen forms a compound with gallium which is sandwiched between the metallic tungsten layer and the NiGe metallurgy. The sheet resistance of the contact metallurgy is low because the metallic tungsten oxide film is substantially thicker than that required to provide oxygen for the gettering process. The contact resistance to the n-type GaAs is low because the oxygen acts in a similar fashion to gold and creates more gallium vacancies in the GaAs. These vacancies are filled with an n-type dopant (Ge), supplied by the contact metallurgy, to create a better ohmic contact. The contact structure is reliable because there is a low gold content in the contact and because the nickel stabilizes the germanium which is not used for filling the gallium vacancies in the GaAs lattice.
    • 本发明描述了对n型GaAs的低电阻接触结构和制造这种接触结构的方法。 接触结构通过沉积Ni,Au,Ge和Ni的连续层而形成。 然后将第五层沉积在前四层上。 第五层是金属氧化钨。 通过在低压氩气和氧气气氛中将钨溅射到4层叠层上形成金属氧化钨。 然后将所得的5层堆叠在快速热退火(RTA)工艺中退火。 RTA过程以600度加热堆叠5秒钟。 所得结构由具有少量分散在其内并由金属氧化钨膜覆盖的AuGa化合物的金属间NiGe化合物组成。 来自金属氧化钨膜的氧气作为吸气机制,在RTA工艺期间产生GaAs晶格结构中的镓空位。 氧气与金属钨层和NiGe冶金之间形成与镓的化合物。 接触冶金的薄层电阻低,因为金属氧化钨薄膜比为吸气过程提供氧气所需的金属氧化物薄膜要厚。 对n型GaAs的接触电阻很低,因为氧以与金类似的方式起作用,并在GaAs中产生更多的镓空位。 这些空位填充有由接触冶金提供的n型掺杂剂(Ge),以产生更好的欧姆接触。 接触结构是可靠的,因为接触中的金含量低,并且因为镍使不稳定锗不能用于填充GaAs晶格中的镓空位。
    • 3. 发明授权
    • System for measuring intraocular pressure of an eye and a MEM sensor for use therewith
    • 用于测量眼睛眼内压的系统和与其一起使用的MEM传感器
    • US06447449B1
    • 2002-09-10
    • US09642573
    • 2000-08-21
    • Aaron J. FleischmanShuvo Roy
    • Aaron J. FleischmanShuvo Roy
    • A61B316
    • A61B3/16
    • A tonometer sensor for disposition in proximity to a portion of a surface of eye comprises a substrate including a contact surface for making contact with the surface portion of the eye. The contact surface includes an outer non-compliant region and in inner compliant region fabricated as an impedance element that varies in impedance as the inner region changes shape. A first region of material is responsive to a non-invasive external force to press the contact surface against the surface portion of the eye and cause the compliant region to change shape in proportion to an intraocular pressure of the eye. A second region of conductive material is electrically coupled to the impedance element of the compliant region and is responsive to an external signal for energizing the impedance element so that the intraocular pressure may be determined.
    • 用于配置在眼睛表面的一部分附近的眼压计传感器包括包括用于与眼睛的表面部分接触的接触表面的基底。 接触表面包括外部非顺应性区域,并且在内部顺应性区域中制造为阻抗元件,该阻抗元件在内部区域改变形状时阻抗变化。 第一材料区域响应于非侵入性外力以将接触表面压靠眼睛的表面部分,并使顺应区域与眼睛的眼内压成比例地改变形状。 导电材料的第二区域电耦合到顺应性区域的阻抗元件,并且响应于外部信号以激励阻抗元件,使得可以确定眼内压。
    • 5. 发明授权
    • Microneedle array module and method of fabricating the same
    • US06790372B2
    • 2004-09-14
    • US10162848
    • 2002-06-05
    • Shuvo RoyAaron J. Fleischman
    • Shuvo RoyAaron J. Fleischman
    • B61C100
    • B81C1/00111A61M37/0015A61M2037/003A61M2037/0038A61M2037/0053B81B2201/055
    • A microneedle array module is disclosed comprising a multiplicity of microneedles affixed to and protruding outwardly from a front surface of a substrate to form the array, each microneedle of the array having a hollow section which extends through its center to an opening in the tip thereof. A method of fabricating the microneedle array module is also disclosed comprising the steps of: providing etch resistant mask layers to one and another opposite surfaces of a substrate to predetermined thicknesses; patterning the etch resistant mask layer of the one surface for outer dimensions of the microneedles of the array; patterning the etch resistant mask layer of the other surface for inner dimensions of the microneedles of the array; etching unmasked portions of the substrate from one and the other surfaces to first and second predetermined depths, respectively; and removing the mask layers from the one and the other surfaces. One embodiment of the method includes the steps of: providing an etch resistant mask layer to the other surface of the substrate to a predetermined thickness; patterning the etch resistant mask layer of the other surface to define a reservoir region in the substrate; and etching away the unmasked reservoir region of the substrate to form a reservoir well in the other surface of the substrate. A layer of material may be provided to the other surface to enclose the reservoir well and a passageway is provided through the layer to the well region.
    • 6. 发明授权
    • Apparatus and method for measuring intraocular pressure
    • 用于测量眼内压的装置和方法
    • US06994672B2
    • 2006-02-07
    • US10118440
    • 2002-04-08
    • Aaron J. FleischmanShuvo Roy
    • Aaron J. FleischmanShuvo Roy
    • A61B3/16
    • A61B3/16A61B2562/0247
    • An apparatus (176) for measuring intraocular pressure (IOP) comprises an applanation tonometer (180) having a distal end that is movable toward the eye and a disposable module (188) positioned at the distal end. The module (188) includes a sensor carrier (192) and a sensor (10) connected to the sensor carrier. The sensor (10) comprises a contact surface (14) for making contact with a surface portion of the eye (36). The contact surface (14) includes an outer non-compliant region (16) and an inner compliant region (18) fabricated as an impedance element that varies in impedance as the inner compliant region changes shape. The sensor (10) further comprises a region of conductive material (38) electrically coupled to the impedance element of the compliant region (18) and responsive to an external signal for energizing the impedance element so that the IOP may be determined.
    • 用于测量眼内压(IOP)的装置(176)包括具有能够朝向眼睛移动的远端的压平眼压计(180)和位于远端的一次性模块(188)。 模块(188)包括连接到传感器载体的传感器载体(192)和传感器(10)。 传感器(10)包括用于与眼睛(36)的表面部分接触的接触表面(14)。 接触表面(14)包括外部非顺应性区域(16)和内部顺应性区域(18),该内部顺应性区域(18)被制造为当内部顺应性区域改变形状时阻抗变化的阻抗元件。 传感器(10)还包括电耦合到柔性区域(18)的阻抗元件的导电材料(38)的区域,并且响应于外部信号来激励阻抗元件,使得可以确定IOP。
    • 7. 发明授权
    • Intraocular pressure measurement system including a sensor mounted in a contact lens
    • 眼内压测量系统,包括安装在隐形眼镜中的传感器
    • US06749568B2
    • 2004-06-15
    • US10128321
    • 2002-04-22
    • Aaron J. FleischmanShuvo RoyHilel Lewis
    • Aaron J. FleischmanShuvo RoyHilel Lewis
    • A61B316
    • A61B3/16A61B2562/028
    • An apparatus for measuring intraocular pressure (IOP) comprises a contact lens including an inner surface contoured to a surface portion of an eye and a sensor disposed in the contact lens. The sensor comprises a contact surface for making contact with the surface portion of the eye. The contact surface includes an outer non-compliant region and an inner compliant region fabricated as an impedance element that varies in impedance as the inner compliant region changes shape. The sensor further comprises a region of conductive material electrically coupled to the impedance element of the compliant region and responsive to an external signal for energizing the impedance element so that the IOP may be determined.
    • 用于测量眼内压(IOP)的装置包括隐形眼镜,其包括形成眼睛表面部分的内表面和设置在隐形眼镜中的传感器。 传感器包括用于与眼睛的表面部分接触的接触表面。 接触表面包括外部非顺应性区域和制造为阻抗元件的内部顺应性区域,其随着内部顺应性区域改变形状而阻抗变化。 该传感器还包括导电材料的区域,该区域电耦合到柔性区域的阻抗元件,并且响应外部信号以激发阻抗元件,使得可以确定IOP。