会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Liquid feed pump apparatus
    • 液体进料泵装置
    • US20050100464A1
    • 2005-05-12
    • US10977406
    • 2004-10-29
    • Shuzo Maruyama
    • Shuzo Maruyama
    • G01N30/32F04B11/00F04B49/24G01N30/26F04B49/00F04B23/00
    • F04B49/24F04B11/005
    • An adjustment channel is connected to first and second pump mechanisms in parallel therewith. The flow of a liquid sent by pump heads is split, and part of the liquid is sent to an outlet port side, while the remaining liquid flows through the adjustment channel and is returned to an inlet port side. The adjustment channel has a restrictor which is so arranged that the flow rate is set to 100 μL/min to 1 mL/min, and pressure of 2 MPa to 20 MPa or thereabouts is applied thereto. In micro LC and nano LC, the flow rate of a column is 100 nL/min to 10 μL/min or thereabouts, and pressure of several MPa to 20 MPa or thereabouts is applied. Therefore, of the liquid sent from the pump mechanism, 0.1% to 1% is delivered from the outlet port, while the remaining liquid flows through the adjustment channel and is returned to the inlet port side.
    • 调节通道与第一和第二泵机构并联连接。 由泵头发送的液体的流动被分离,并且一部分液体被送到出口侧,而剩余的液体流过调节通道并返回到入口侧。 调节通道具有限流器,其设定为将流量设定为100ul / min〜1mL / min,施加2MPa〜20MPa的压力。 在微LC和纳米LC中,柱的流速为100 nL / min至10μL/ min,应用几MPa至20 MPa的压力。 因此,从泵机构送出的液体中,从出口输出0.1%〜1%的液体,而剩余的液体流过调节通道并返回入口侧。
    • 4. 发明授权
    • Preparative liquid chromatograph system
    • 制备液相色谱系统
    • US08775098B2
    • 2014-07-08
    • US13059222
    • 2008-08-19
    • Shuzo Maruyama
    • Shuzo Maruyama
    • G06F19/00G01N30/06
    • G01N30/82G01N30/8665G01N30/88
    • A sample is introduced from an injector unit into a mobile phase. One target component is separated into a plurality of vials by a fraction collector. Next, a sampler sequentially suctions the eluate from the plurality of the vials and performs an LC analysis on each of the eluate portions, thereby producing a chromatogram. A peak detector calculates the peak area corresponding to the amount of the target component in each chromatogram. A delay estimator extracts the peak area in the fraction having the maximum peak area and the peak areas in the previous and succeeding fractions on the time axis of the foregoing fraction. Then, the delay estimator estimates a delay volume from a detector to the tip end of the dispenser nozzle based on data such as the peak areas, the flow rate of the liquid fed from the pump, positions of the vials, and the position of the peak of the target component in the chromatogram detected by the detector, and stores the delay volume. Upon preparative separation of a desired component, a delay time is calculated based on the delay volume and the flow rate and the timing for the preparative separation is controlled based on the delay time.
    • 将样品从注射器单元引入流动相。 一个目标组分通过馏分收集器分离成多个小瓶。 接下来,采样器依次从多个小瓶中吸收洗脱液,并对每个洗脱液部分进行LC分析,从而产生色谱图。 峰值检测器计算对应于每个色谱图中目标成分的量的峰面积。 延迟估计器提取具有上述分数的时间轴上的先前和后续分数中具有最大峰面积和峰面积的分数中的峰面积。 然后,延迟估计器基于诸如峰值面积,从泵送入的液体的流速,小瓶的位置以及小瓶的位置等数据,估计从检测器到分配器喷嘴的尖端的延迟体积 由检测器检测到的色谱图中的目标成分的峰值,并存储延迟体积。 在所需组分的制备分离时,基于延迟体积和流速计算延迟时间,并且基于延迟时间来控制制备分离的时序。
    • 5. 发明授权
    • Fractionating/collecting device of liquid chromatograph
    • 液相色谱仪的分馏/收集装置
    • US07138050B2
    • 2006-11-21
    • US10834968
    • 2004-04-30
    • Shuzo MaruyamaYosuke Iwata
    • Shuzo MaruyamaYosuke Iwata
    • B01D15/08
    • G01N30/82G01N30/461G01N2030/8417G01N30/24
    • In a preferred embodiment, a sample container storage part for storing a number of sample containers S, a nozzle for dropping a sample component separated and supplied by an LC and an additive liquid such as digestive fluid supplied from another liquid supplying part to the sample container S, a carrying mechanism for carrying and positioning the sample container at an arbitrary position under the nozzle, and a second nozzle, serving as a suction/injection mechanism, for sucking in the fractionated/collected sample component and injecting the sample component to another LC. The carrying mechanism provides a rotation mechanism. The carrying mechanism rotates over 180 degrees and carries the sample container S completed with fractionating/collecting to the position of the second nozzle, and the sample is sucked in by the second nozzle and injected to the LC of next stage.
    • 在一个优选实施例中,用于储存多个样品容器S的样品容器储存部分,用于将由LC分离和供应的样品组分滴下的喷嘴和从另一个液体供应部分供应的添加剂液体如消化液添加到样品容器 S,用于将样品容器携带并定位在喷嘴下方的任意位置的载体机构,以及用作吸入/收集的样品组分的吸入/注入机构的第二喷嘴,并将样品组分注入另一LC 。 承载机构提供旋转机构。 运送机构旋转180度以上,将分样收集完毕的样本容器S运送到第二喷嘴的位置,将样品从第二喷嘴吸入并注入下一级的LC。
    • 6. 发明授权
    • Internal combustion engine
    • 内燃机
    • US3980064A
    • 1976-09-14
    • US334658
    • 1973-02-22
    • Hajime ArigaShuzo Maruyama
    • Hajime ArigaShuzo Maruyama
    • F02B47/06F02B51/02F02B53/10F02B75/02F02B75/12F02M43/04F02M25/00
    • F02B53/10F02B47/06F02B51/02F02M43/04F02B2053/005F02B2075/027F02B2075/125Y02T10/121Y02T10/123Y02T10/126Y02T10/17
    • Herein disclosed is a new internal combustion engine which is operable on a fuel which is combusted with the agency of an oxidizing gas containing hydrogen peroxide or oxygen gas so that exhaust gases emitted from the engine contains no nitrogen oxides in the absence of the element nitrogen in the oxidizing gas. Where the hydrogen peroxide in particular is utilized, the hydrogen peroxide exothermically decomposes into a hot mixture of water and oxygen so that the fuel is combusted at a high temperature so that the exhaust gases are clear of not only the nitrogen oxides but unburned hydrocarbons and carbon monoxide. Since no air is used as the oxidizing gas for the fuel, the internal combustion engine is suitable for use in operations in those environments in which air is extremely thin although the engine can be successfully incorporated in various power driven vehicles.
    • 这里公开的是一种新的内燃机,其可在与含有过氧化氢或氧气的氧化气体的燃烧燃烧的燃料上操作,使得在不存在元素氮的情况下,从发动机排出的废气不含氮氧化物 氧化气体。 特别是在使用过氧化氢的情况下,过氧化氢会放热分解成热和氧气的混合物,使得燃料在高温下燃烧,使得废气不仅可以清除氮氧化物,而且可以清除未燃碳氢化合物和碳 一氧化碳 由于没有空气用作燃料的氧化气体,因此内燃机适用于空气极薄的环境中的操作,尽管发动机可以成功地并入各种动力驱动的车辆中。
    • 8. 发明授权
    • Fractionating/collecting device of liquid chromatograph
    • 液相色谱仪的分馏/收集装置
    • US08741134B2
    • 2014-06-03
    • US11311166
    • 2005-12-20
    • Shuzo MaruyamaYosuke Iwata
    • Shuzo MaruyamaYosuke Iwata
    • B01D15/08
    • G01N30/82G01N30/461G01N2030/8417G01N30/24
    • In a preferred embodiment, a sample container storage part for storing a number of sample containers S, a nozzle for dropping a sample component separated and supplied by an LC and an additive liquid such as digestive fluid supplied from another liquid supplying part to the sample container S, a carrying mechanism for carrying and positioning the sample container at an arbitrary position under the nozzle, and a second nozzle, serving as a suction/injection mechanism, for sucking in the fractionated/collected sample component and injecting the sample component to another LC. The carrying mechanism provides a rotation mechanism. The carrying mechanism rotates over 180 degrees and carries the sample container S completed with fractionating/collecting to the position of the second nozzle, and the sample is sucked in by the second nozzle and injected to the LC of next stage.
    • 在一个优选实施例中,用于储存多个样品容器S的样品容器储存部分,用于将由LC分离和供应的样品组分滴下的喷嘴和从另一个液体供应部分供应的添加剂液体如消化液添加到样品容器 S,用于将样品容器携带并定位在喷嘴下方的任意位置的载体机构,以及用作吸入/收集的样品组分的吸入/注入机构的第二喷嘴,并将样品组分注入另一LC 。 承载机构提供旋转机构。 运送机构旋转180度以上,将分样收集完毕的样本容器S运送到第二喷嘴的位置,将样品从第二喷嘴吸入并注入下一级的LC。
    • 9. 发明授权
    • Sample introduction method
    • 样品介绍方法
    • US08234939B2
    • 2012-08-07
    • US12667677
    • 2008-09-24
    • Yoshiaki MaedaShuzo MaruyamaKenichi Yasunaga
    • Yoshiaki MaedaShuzo MaruyamaKenichi Yasunaga
    • B01L3/02
    • G01N30/24G01N30/20G01N35/1097G01N2030/201G01N2030/202
    • A sample introduction method for reducing carry-over is provided. After a sample introduction device in a total volume injection method draws a proper amount of a sample solution from a sample container and further draws a solution with the same composition as a mobile phase solution with a needle 24, the needle 24 is inserted into an injection port 25. When flow paths are switched to communicate a liquid feeder, a sample loop 23, the needle 24, the injection port 25, and a separation/detection section, the solution with the same composition as the mobile phase solution is forced into a gap between the injection port 25 and the needle 24. Therefore, the samples squeezed out of a tip section of the needle 24 during the switching of the flow paths are prevented from being forced into the gap between the needle 24 and the injection port 25.
    • 提供了用于减少转移的样本引入方法。 在总体积注射方法中的样品引入装置从样品容器中抽取合适量的样品溶液后,用针24进一步抽取具有与流动相溶液相同组成的溶液,将针24插入注射器 端口25.当切换流路以连通液体进料器,样品回路23,针24,注射端口25和分离/检测部分时,具有与流动相溶液相同组成的溶液被迫进入 注射口25和针24之间的间隙。因此,防止了在切换流道期间从针24的尖端部分挤出的样品被迫进入针24和注射端口25之间的间隙。
    • 10. 发明申请
    • Preparative Liquid Chromatograph System
    • 制备型液相色谱系统
    • US20110184658A1
    • 2011-07-28
    • US13059222
    • 2008-08-19
    • Shuzo Maruyama
    • Shuzo Maruyama
    • G06F19/00G01N30/06
    • G01N30/82G01N30/8665G01N30/88
    • A sample is introduced from an injector unit (3) into a mobile phase. One target component is separated into a plurality of vials (67) by a fraction collector (6). Next, a sampler (34) sequentially suctions the eluate from the plurality of the vials (67) and performs an LC analysis on each of the eluate portions, thereby producing a chromatogram. A peak detector (72) calculates the peak area corresponding to the amount of the target component in each chromatogram. A delay estimator (73) extracts the peak area in the fraction having the maximum peak area and the peak areas in the previous and succeeding fractions on the time axis of the foregoing fraction. Then, the delay estimator (73) estimates a delay volume from a detector (5) to the tip end of the dispenser nozzle (72) based on data such as the peak areas, the flow rate of the liquid fed from the pump (2), positions of the vials (67), and the position of the peak of the target component in the chromatogram detected by the detector (5), and stores the delay volume. Upon preparative separation of a desired component, a delay time is calculated based on the delay volume and the flow rate and the timing for the preparative separation is controlled based on the delay time.
    • 将样品从注射器单元(3)引入流动相。 一个目标组分通过级分收集器(6)分离成多个小瓶(67)。 接下来,取样器(34)从多个小瓶(67)顺序地抽吸洗脱液,并对每个洗脱液部分进行LC分析,从而产生色谱图。 峰值检测器(72)计算与每个色谱图中的目标成分的量对应的峰面积。 延迟估计器(73)提取具有上述分数的时间轴上的前一个和后续分数中具有最大峰面积和峰面积的分数中的峰面积。 然后,延迟估计器(73)基于诸如峰面积,从泵(2)供给的液体的流速等数据估计从检测器(5)到分配器喷嘴(72)的尖端的延迟体积 ),小瓶(67)的位置和由检测器(5)检测到的色谱图中的目标成分的峰的位置,并存储延迟体积。 在所需组分的制备分离时,基于延迟体积和流速计算延迟时间,并且基于延迟时间来控制制备分离的时序。