会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Droplet deposition head and actuator component therefor
    • US10875302B2
    • 2020-12-29
    • US16334258
    • 2016-10-05
    • Robert Errol McMullenPeter MardilovichPeter Boltryk
    • Robert Errol McMullenPeter MardilovichPeter Boltryk
    • B41J2/14
    • B41J2/14233B41J2/14274B41J2002/14241B41J2002/14419B41J2202/12
    • actuator component for a droplet deposition head made up of a number of patterned layers, each layer extending in a plane normal to a layering direction, with the layers being stacked one upon another in said layering direction. A row of fluid chambers is formed within the layers, with the row extending in a row direction, which is substantially perpendicular to the layering direction. Each fluid chamber is provided with a respective nozzle and a respective actuating element, which is actuable to cause the ejection of fluid from the chamber in question through the corresponding one of the nozzles. A row of inlet passageways is also formed within the layers of the actuator component, with the row extending in the row direction. Each inlet passageway is fluidically connected so as to supply fluid to a respective one of said fluid chambers. In some embodiments, either a row of outlet passageways or a second row of inlet passageways is additionally formed within the layers; in either case, such row extends in the row direction. Where outlet passageways are present, each is fluidically connected so as to receive fluid from a respective one of said fluid chambers. At least one of the rows of passageways is staggered, whereby at least some of the members of the staggered row in question are offset from their neighbours in an offset direction for the staggered row in question that is perpendicular to the row direction. The row of fluid chambers may also be staggered.
    • 3. 发明申请
    • DROPLET DEPOSITION HEAD AND ACTUATOR COMPONENT THEREFOR
    • US20200009866A1
    • 2020-01-09
    • US16334258
    • 2016-10-05
    • Robert Errol MCMULLENPeter MARDILOVICHPeter BOLTRYK
    • Robert Errol MCMULLENPeter MARDILOVICHPeter BOLTRYK
    • B41J2/14
    • actuator component for a droplet deposition head made up of a number of patterned layers, each layer extending in a plane normal to a layering direction, with the layers being stacked one upon another in said layering direction. A row of fluid chambers is formed within the layers, with the row extending in a row direction, which is substantially perpendicular to the layering direction. Each fluid chamber is provided with a respective nozzle and a respective actuating element, which is actuable to cause the ejection of fluid from the chamber in question through the corresponding one of the nozzles. A row of inlet passageways is also formed within the layers of the actuator component, with the row extending in the row direction. Each inlet passageway is fluidically connected so as to supply fluid to a respective one of said fluid chambers. In some embodiments, either a row of outlet passageways or a second row of inlet passageways is additionally formed within the layers; in either case, such row extends in the row direction. Where outlet passageways are present, each is fluidically connected so as to receive fluid from a respective one of said fluid chambers. At least one of the rows of passageways is staggered, whereby at least some of the members of the staggered row in question are offset from their neighbours in an offset direction for the staggered row in question that is perpendicular to the row direction. The row of fluid chambers may also be staggered.
    • 10. 发明申请
    • METHOD OF FORMING A NANO-STRUCTURE
    • 形成纳米结构的方法
    • US20130175177A1
    • 2013-07-11
    • US13822062
    • 2010-10-21
    • Peter MardilovichQingqiao WeiAnthony M. Fuller
    • Peter MardilovichQingqiao WeiAnthony M. Fuller
    • C25D5/02
    • C25D5/022B81B2203/0361B81C1/00031B81C2201/0114B82Y20/00B82Y30/00B82Y40/00C25D11/045C25D11/12C25D11/34
    • A method of forming a nano-structure (100′) involves forming a multi-layered structure (10) including an oxidizable material layer (14) established on a substrate (12), and another oxidizable material layer (16) established on the oxidizable material layer (14). The oxidizable material layer (14) is an oxidizable material having an expansion coefficient, during oxidation, that is more than 1. Anodizing the other oxidizable material layer (16) forms a porous anodic structure (16′), and anodizing the oxidizable material layer (14) forms a dense oxidized layer (14′) and nano-pillars (20) which grow through the porous anodic structure (16′) into pores (18) thereof. The porous structure (16′) is selectively removed to expose the nano-pillars (20). A surface (I) between the dense oxidized layer (14′) and a remaining portion of the oxidizable material layer (14) is anodized to consume a substantially cone-shaped portion (32) of the nano-pillars (20) to form cylindrical nano-pillars (20′).
    • 形成纳米结构(100')的方法包括形成包括建立在基板(12)上的可氧化材料层(14)的多层结构(10),以及建立在可氧化的材料层(16)上的另一可氧化材料层 材料层(14)。 可氧化材料层(14)是在氧化期间具有大于1的膨胀系数的可氧化材料。阳极氧化其它可氧化材料层(16)形成多孔阳极结构(16'),并阳极氧化可氧化材料层 (14)形成致密氧化层(14')和通过多孔阳极结构(16')生长成其孔隙(18)的纳米柱(20)。 选择性地去除多孔结构(16')以暴露纳米柱(20)。 密集氧化层(14')和可氧化材料层(14)的剩余部分之间的表面(I)被阳极氧化以消耗纳米柱(20)的大致锥形部分(32),以形成圆柱形 纳米柱(20')。