会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Shape index weighted voting for detection of objects
    • 形状指数加权投票用于检测物体
    • US07529395B2
    • 2009-05-05
    • US11067542
    • 2005-02-24
    • Pascal CathierXiangwei ZhangJonathan StoeckelMatthias Wolf
    • Pascal CathierXiangwei ZhangJonathan StoeckelMatthias Wolf
    • G06K9/00
    • G06T7/0012G06K9/4671G06T2207/30061Y10S128/922
    • In one aspect of the present invention, a method for calculating a response value at a first voxel indicative of a global shape in an image is provided. The method includes the steps of (a) determining at least one local shape descriptor associated with each of the at least one local shape descriptor; (b) determining a spread function associated with the each of the at least one local shape descriptor; (c) determining second voxels around the first voxel; (d) calculating values for each the at least one local shape descriptor at each of the second voxels; (e) determining a contribution of each of the second voxels at the first voxel based on the spread functions; and (f) using a combination function to combine the contributions to determine the response value indicative of the global shape.
    • 在本发明的一个方面,提供了一种用于计算在图像中指示全局形状的第一体素处的响应值的方法。 该方法包括以下步骤:(a)确定与所述至少一个局部形状描述符中的每一个相关联的至少一个局部形状描述符; (b)确定与所述至少一个局部形状描述符中的每一个相关联的扩展函数; (c)确定第一体素周围的第二体素; (d)计算每个所述第二体素中的每个所述至少一个局部形状描述符的值; (e)基于扩展函数确定第一体素中的每个第二体素的贡献; 和(f)使用组合函数来组合贡献以确定指示全局形状的响应值。
    • 5. 发明授权
    • Incorporating spatial knowledge for classification
    • 结合空间知识进行分类
    • US07634120B2
    • 2009-12-15
    • US10915076
    • 2004-08-10
    • Arun KrishnanGlenn FungJonathan Stoeckel
    • Arun KrishnanGlenn FungJonathan Stoeckel
    • G06K9/00
    • G06T7/0012G06K9/6807G06T2207/10072G06T2207/20012G06T2207/30064
    • We propose using different classifiers based on the spatial location of the object. The intuitive idea behind this approach is that several classifiers may learn local concepts better than a “universal” classifier that covers the whole feature space. The use of local classifiers ensures that the objects of a particular class have a higher degree of resemblance within that particular class. The use of local classifiers also results in memory, storage and performance improvements, especially when the classifier is kernel-based. As used herein, the term “kernel-based classifier” refers to a classifier where a mapping function (i.e., the kernel) has been used to map the original training data to a higher dimensional space where the classification task may be easier.
    • 我们建议基于对象的空间位置使用不同的分类器。 这种方法背后的直观思想是,几个分类器可以比涵盖整个特征空间的“通用”分类器更好地学习局部概念。 使用本地分类器确保特定类的对象在该特定类中具有更高程度的相似度。 使用本地分类器也会导致内存,存储和性能改进,特别是当分类器是基于内核的时候。 如本文所使用的,术语“基于内核的分类器”是指其中已经使用映射函数(即,内核)将原始训练数据映射到更高维度空间的分类器,其中分类任务可以更容易。