会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Flow scheduling for network application apparatus
    • 网络应用设备的流调度
    • US08046465B2
    • 2011-10-25
    • US11174181
    • 2005-07-01
    • John C. FergusonYevgeny Korsunsky
    • John C. FergusonYevgeny Korsunsky
    • G06F15/173
    • H04L63/20G06F9/5027G06F9/5033G06F9/505G06F9/5055H04L29/06H04L63/10H04L63/1416H04L67/10H04L67/306H04L67/325H04L67/327H04L67/34H04L69/329
    • A method and system for distributing flows between a multiple processors. The flows can be received from an external source such as a network, by a front-end processor that recognizes the flow and the associated request, and identifies at least one internal applications processor to process the request/flow. The front-end processor utilizes a flow scheduling vector related to the identified applications processor(s), and the flow scheduling vector can be based on intrinsic data from the applications processor(s) that can include CPU utilization, memory utilization, packet loss, and queue length or buffer occupation. In some embodiments, applications processors can be understood to belong to a group, wherein applications processors within a group can be configured identically. A flow schedule vector can be computed for the different applications processor groups. In some embodiments, a control processor can collect the intrinsic applications processor data, compute the flow scheduling vectors, and transfer the flow scheduling vectors to the front-end processor.
    • 一种用于在多个处理器之间分配流的方法和系统。 可以从诸如网络的外部源,由识别流程和相关联的请求的前端处理器接收流,并且识别至少一个内部应用处理器来处理请求/流。 前端处理器利用与所识别的应用处理器相关的流调度向量,并且流调度向量可以基于来自应用处理器的固有数据,其可以包括CPU利用率,存储器利用率,分组丢失, 队列长度或缓冲区占用。 在一些实施例中,应用处理器可以被理解为属于一个组,其中组内的应用处理器可以被相同地配置。 可以为不同的应用处理器组计算流程调度向量。 在一些实施例中,控制处理器可以收集本征应用处理器数据,计算流调度向量,并将流调度向量传送到前端处理器。
    • 6. 发明授权
    • Systems and methods for processing data flows
    • 用于处理数据流的系统和方法
    • US07979368B2
    • 2011-07-12
    • US11926307
    • 2007-10-29
    • Harsh KapoorMoisey AkermanStephen D. JustusJohn C. FergusonYevgeny KorsunskyPaul S. GalloCharles Ching LeeTimothy M. MartinChunsheng FuWeidong Xu
    • Harsh KapoorMoisey AkermanStephen D. JustusJohn C. FergusonYevgeny KorsunskyPaul S. GalloCharles Ching LeeTimothy M. MartinChunsheng FuWeidong Xu
    • G06N5/00
    • H04L63/1441G06F21/55H04L63/14H04L63/1425H04L2463/141
    • A flow processing facility, which uses a set of artificial neurons for pattern recognition, such as a self-organizing map, in order to provide security and protection to a computer or computer system supports unified threat management based at least in part on patterns relevant to a variety of types of threats that relate to computer systems, including computer networks. Flow processing for switching, security, and other network applications, including a facility that processes a data flow to address patterns relevant to a variety of conditions are directed at internal network security, virtualization, and web connection security. A flow processing facility for inspecting payloads of network traffic packets detects security threats and intrusions across accessible layers of the IP-stack by applying content matching and behavioral anomaly detection techniques based on regular expression matching and self-organizing maps. Exposing threats and intrusions within packet payload at or near real-time rates enhances network security from both external and internal sources while ensuring security policy is rigorously applied to data and system resources. Intrusion Detection and Protection (IDP) is provided by a flow processing facility that processes a data flow to address patterns relevant to a variety of types of network and data integrity threats that relate to computer systems, including computer networks.
    • 使用一组用于模式识别的人造神经元(例如自组织图)以便向计算机或计算机系统提供安全性和保护的流程处理设备至少部分地基于与 与计算机系统(包括计算机网络)相关的各种类型的威胁。 用于交换,安全和其他网络应用的流处理,包括处理数据流以处理与各种条件相关的模式的设施,针对内部网络安全性,虚拟化和Web连接安全性。 用于检查网络流量包的有效载荷的流处理设施通过应用基于正则表达式匹配和自组织映射的内容匹配和行为异常检测技术来检测IP堆栈的可访问层的安全威胁和入侵。 在实时速率或接近实时速率的情况下,在数据包有效载荷中暴露威胁和入侵,从而确保安全策略严格应用于数据和系统资源,从而提高了外部和内部来源的网络安全性。 入侵检测和保护(IDP)由处理数据流的流处理设备提供,以处理与包括计算机网络在内的计算机系统相关的各种类型的网络和数据完整性威胁相关的模式。