会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Sensitivity-based complex statistical modeling for random on-chip variation
    • 基于敏感度的随机片上变化的复杂统计建模
    • US20120072880A1
    • 2012-03-22
    • US13199222
    • 2011-08-23
    • Jiayong LeMustafa CelikGuy MaorAyhan Mutlu
    • Jiayong LeMustafa CelikGuy MaorAyhan Mutlu
    • G06F17/50
    • G06F17/5045G06F17/5031G06F17/5068G06F2217/84
    • The invention provides a method for performing statistical static timing analysis using a novel on-chip variation model, referred to as Sensitivity-based Complex Statistical On-Chip Variation (SCS-OCV).SCS-OCV introduces complex variation concept to resolve the blocking technical issue of combining local random variations, enabling accurate calculation of statistical variations with correlations, such as common-path pessimism removal (CPPR).SCS-OCV proposes practical statistical min/max operations for random variations that can guarantee pessimism at nominal and targeted N-sigma corner, and extends the method to handle complex variations, enabling graph-based full arrival/required time propagation under variable compaction.SCS-OCV provides a statistical corner evaluation method for complex random variables that can transform vector-based parametric timing information to the single-value corner-based timing report, and based on the method derives equations to bridge POCV/SSTA with LOCV. This significantly reduces the learning curve and increases the usage of the technology, being more easily adopted by the industry.
    • 本发明提供一种用于使用称为基于灵敏度的复杂统计片上变化(SCS-OCV)的新颖的片上变化模型来执行统计静态时序分析的方法。 SCS-OCV引入了复杂的变异概念,以解决组合局部随机变量的阻塞技术问题,从而能够准确计算统计变异与相关性,如共路径悲观消除(CPPR)。 SCS-OCV为随机变化提供了实用的统计最小/最大运算,可以保证名义和目标N-Σ角的悲观,并扩展了处理复杂变化的方法,从而在可变压缩下实现了基于图形的完全到达/所需时间传播。 SCS-OCV为复杂的随机变量提供了统计角点评估方法,可以将基于矢量的参数定时信息转换为基于单值角的定时报告,并且基于该方法得出方程来将POCV / SSTA与LOCV桥接。 这显着降低了学习曲线,增加了该技术的使用,更容易被行业所采纳。
    • 3. 发明授权
    • Sensitivity-based complex statistical modeling for random on-chip variation
    • 基于敏感度的随机片上变化的复杂统计建模
    • US08407640B2
    • 2013-03-26
    • US13199222
    • 2011-08-23
    • Jiayong LeMustafa CelikGuy MaorAyhan Mutlu
    • Jiayong LeMustafa CelikGuy MaorAyhan Mutlu
    • G06F9/455G06F17/50
    • G06F17/5045G06F17/5031G06F17/5068G06F2217/84
    • The invention provides a method for performing statistical static timing analysis using a novel on-chip variation model, referred to as Sensitivity-based Complex Statistical On-Chip Variation (SCS-OCV). SCS-OCV introduces complex variation concept to resolve the blocking technical issue of combining local random variations, enabling accurate calculation of statistical variations with correlations, such as common-path pessimism removal (CPPR). SCS-OCV proposes practical statistical min/max operations for random variations that can guarantee pessimism at nominal and targeted N-sigma corner, and extends the method to handle complex variations, enabling graph-based full arrival/required time propagation under variable compaction. SCS-OCV provides a statistical corner evaluation method for complex random variables that can transform vector-based parametric timing information to the single-value corner-based timing report, and based on the method derives equations to bridge POCV/SSTA with LOCV. This significantly reduces the learning curve and increases the usage of the technology, being more easily adopted by the industry.
    • 本发明提供一种用于使用称为基于灵敏度的复杂统计片上变化(SCS-OCV)的新颖的片上变化模型来执行统计静态时序分析的方法。 SCS-OCV引入了复杂的变异概念,以解决组合局部随机变量的阻塞技术问题,从而能够准确计算统计变异与相关性,如共路径悲观消除(CPPR)。 SCS-OCV为随机变量提供了实用的统计最小/最大运算,可以保证名义和目标N-σ角的悲观,并扩展了处理复杂变化的方法,从而在可变压缩下实现了基于图形的全到达/所需时间传播。 SCS-OCV为复杂的随机变量提供了统计角点评估方法,可以将基于矢量的参数定时信息转换为基于单值角的定时报告,并且基于该方法得出方程来将POCV / SSTA与LOCV桥接。 这显着降低了学习曲线,增加了该技术的使用,更容易被行业所采纳。
    • 5. 发明申请
    • Defining Statistical Sensitivity for Timing Optimization of Logic Circuits with Large-Scale Process and Environmental Variations
    • 定义具有大规模过程和环境变化的逻辑电路的时序优化的统计灵敏度
    • US20080072198A1
    • 2008-03-20
    • US11629445
    • 2005-06-11
    • Mustafa CelikJiayong LeLawrence PileggiXin Li
    • Mustafa CelikJiayong LeLawrence PileggiXin Li
    • G06F17/50
    • G06F17/5031G06F2217/10
    • The large-scale process and environmental variations for today's nano-scale ICs are requiring statistical approaches for timing analysis and optimization (1). Significant research has been recently focused on developing new statistical timing analysis algorithms (2), but often without consideration for how one should interpret the statistical timing results for optimization. The invention provides a sensitivity-based metric (2) to assess the criticality of each path and/or arc in the statistical timing graph (4). The statistical sensitivities for both paths and arcs are defined. It is shown that path sensitivity is equivalent to the probability that a path is critical, and arc sensitivity is equivalent to the probability that an arc sits on the critical path. An efficient algorithm with incremental analysis capability (2) is described for fast sensitivity computation that has a linear runtime complexity in circuit size. The efficacy of the proposed sensitivity analysis is demonstrated on both standard benchmark circuits and large industry examples.
    • 目前的纳米尺度IC的大规模工艺和环境变化需要用于时序分析和优化的统计方法(1)。 最近重点研究重点是开发新的统计时序分析算法(2),但往往不考虑如何解释统计时序结果进行优化。 本发明提供了一种基于灵敏度的度量(2)来评估统计时序图(4)中每个路径和/或弧的关键性。 定义了路径和弧线的统计灵敏度。 显示路径灵敏度等于路径关键的概率,弧敏感度等于弧位于关键路径上的概率。 描述了具有增量分析能力的有效算法(2),用于快速灵敏度计算,其电路尺寸具有线性运行时间复杂度。 提出的灵敏度分析的功效在标准基准电路和大型行业实例中得到证明。
    • 6. 发明授权
    • Statistical corner evaluation for complex on chip variation model
    • 复杂的片上变异模型的统计角度评估
    • US08555222B2
    • 2013-10-08
    • US13784701
    • 2013-03-04
    • Jiayong LeMustafa CelikGuy MaorAyhan Mutlu
    • Jiayong LeMustafa CelikGuy MaorAyhan Mutlu
    • G06F9/455G06F17/50
    • G06F17/5045G06F17/5031G06F17/5068G06F2217/84
    • The invention provides a method for performing statistical static timing analysis using a novel on-chip variation model, referred to as Sensitivity-based Complex Statistical On-Chip Variation (SCS-OCV). SCS-OCV introduces complex variation concept to resolve the blocking technical issue of combining local random variations, enabling accurate calculation of statistical variations with correlations, such as common-path pessimism removal (CPPR). SCS-OCV proposes practical statistical min/max operations for random variations that can guarantee pessimism at nominal and targeted N-sigma corner, and extends the method to handle complex variations, enabling graph-based full arrival/required time propagation under variable compaction. SCS-OCV provides a statistical corner evaluation method for complex random variables that can transform vector-based parametric timing information to the single-value corner-based timing report, and based on the method derives equations to bridge POCV/SSTA with LOCV. This significantly reduces the learning curve and increases the usage of the technology, being more easily adopted by the industry.
    • 本发明提供一种用于使用称为基于灵敏度的复杂统计片上变化(SCS-OCV)的新颖的片上变化模型来执行统计静态时序分析的方法。 SCS-OCV引入了复杂的变异概念,以解决组合局部随机变量的阻塞技术问题,从而能够准确计算统计变异与相关性,如共路径悲观消除(CPPR)。 SCS-OCV为随机变量提供了实用的统计最小/最大运算,可以保证名义和目标N-σ角的悲观,并扩展了处理复杂变化的方法,从而在可变压缩下实现了基于图形的全到达/所需时间传播。 SCS-OCV为复杂的随机变量提供了统计角点评估方法,可以将基于矢量的参数定时信息转换为基于单值角的定时报告,并且基于该方法得出方程来将POCV / SSTA与LOCV桥接。 这显着降低了学习曲线,增加了该技术的使用,更容易被行业所采纳。
    • 8. 发明授权
    • Defining statistical sensitivity for timing optimization of logic circuits with large-scale process and environmental variations
    • 定义具有大规模工艺和环境变化的逻辑电路的时序优化的统计灵敏度
    • US07487486B2
    • 2009-02-03
    • US11629445
    • 2005-06-11
    • Mustafa CelikJiayong LeLawrence PileggiXin Li
    • Mustafa CelikJiayong LeLawrence PileggiXin Li
    • G06F17/50G06F7/60G06F7/52
    • G06F17/5031G06F2217/10
    • The large-scale process and environmental variations for today's nano-scale ICs are requiring statistical approaches for timing analysis and optimization (1). Significant research has been recently focused on developing new statistical timing analysis algorithms (2), but often without consideration for how one should interpret the statistical timing results for optimization. The invention provides a sensitivity-based metric (2) to assess the criticality of each path and/or arc in the statistical timing graph (4). The statistical sensitivities for both paths and arcs are defined. It is shown that path sensitivity is equivalent to the probability that a path is critical, and arc sensitivity is equivalent to the probability that an arc sits on the critical path. An efficient algorithm with incremental analysis capability (2) is described for fast sensitivity computation that has a linear runtime complexity in circuit size. The efficacy of the proposed sensitivity analysis is demonstrated on both standard benchmark circuits and large industry examples.
    • 目前的纳米尺度IC的大规模工艺和环境变化需要用于时序分析和优化的统计方法(1)。 最近重点研究重点是开发新的统计时序分析算法(2),但往往不考虑如何解释统计时序结果进行优化。 本发明提供了一种基于灵敏度的度量(2)来评估统计时序图(4)中每个路径和/或弧的关键性。 定义了路径和弧线的统计灵敏度。 显示路径灵敏度等于路径关键的概率,弧敏感度等于弧位于关键路径上的概率。 描述了具有增量分析能力的有效算法(2),用于快速灵敏度计算,其电路尺寸具有线性运行时间复杂度。 提出的灵敏度分析的功效在标准基准电路和大型行业实例中得到证明。
    • 9. 发明申请
    • STATISTICAL CORNER EVALUATION FOR COMPLEX ON CHIP VARIATION MODEL
    • 统计角度对芯片变化模型的复杂度评估
    • US20130179851A1
    • 2013-07-11
    • US13784701
    • 2013-03-04
    • Jiayong LeMustafa CelikGuy MaorAyhan Mutlu
    • Jiayong LeMustafa CelikGuy MaorAyhan Mutlu
    • G06F17/50
    • G06F17/5045G06F17/5031G06F17/5068G06F2217/84
    • The invention provides a method for performing statistical static timing analysis using a novel on-chip variation model, referred to as Sensitivity-based Complex Statistical On-Chip Variation (SCS-OCV).SCS-OCV introduces complex variation concept to resolve the blocking technical issue of combining local random variations, enabling accurate calculation of statistical variations with correlations, such as common-path pessimism removal (CPPR).SCS-OCV proposes practical statistical min/max operations for random variations that can guarantee pessimism at nominal and targeted N-sigma corner, and extends the method to handle complex variations, enabling graph-based full arrival/required time propagation under variable compaction.SCS-OCV provides a statistical corner evaluation method for complex random variables that can transform vector-based parametric timing information to the single-value corner-based timing report, and based on the method derives equations to bridge POCV/SSTA with LOCV. This significantly reduces the learning curve and increases the usage of the technology, being more easily adopted by the industry.
    • 本发明提供一种用于使用称为基于灵敏度的复杂统计片上变化(SCS-OCV)的新颖的片上变化模型来执行统计静态时序分析的方法。 SCS-OCV引入了复杂的变异概念,以解决组合局部随机变量的阻塞技术问题,从而能够准确计算统计变异与相关性,如共路径悲观消除(CPPR)。 SCS-OCV为随机变量提供了实用的统计最小/最大运算,可以保证名义和目标N-σ角的悲观,并扩展了处理复杂变化的方法,从而在可变压缩下实现了基于图形的全到达/所需时间传播。 SCS-OCV为复杂的随机变量提供了统计角点评估方法,可以将基于矢量的参数定时信息转换为基于单值角的定时报告,并且基于该方法得出方程来将POCV / SSTA与LOCV桥接。 这显着降低了学习曲线,增加了该技术的使用,更容易被行业所采纳。