会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Gas sensor using nanotubes
    • 使用纳米管的气体传感器
    • US08567232B2
    • 2013-10-29
    • US12997859
    • 2010-07-09
    • H. Sprague AckleyChristopher A. Wiklof
    • H. Sprague AckleyChristopher A. Wiklof
    • G01N29/02G01N33/00
    • G01N33/0055
    • Techniques are generally described for detecting a concentration level of at least one gas. Some example devices may include a sensor including conductive plate on a surface of dielectric including a nanotube layer formed thereon. The conductive plate and the nanotube layer form a resonator that resonates at a frequency in response to an interrogation signal. The nanotube layer may be configured to associate with one or more gas molecules. The frequency at which the resonator resonates may shift according to which gas molecules are associated with the nanotube layer to identify a particular gas. An amount of resonance may be exhibited as a resonant response signal. An amplitude of the resonant response signal may be indicative of the concentration level of the detected gas.
    • 通常描述了用于检测至少一种气体的浓度水平的技术。 一些示例性装置可以包括传感器,其包括在包括其上形成的纳米管层的电介质的表面上的导电板。 导电板和纳米管层形成响应于询问信号以频率谐振的谐振器。 纳米管层可以被配置为与一个或多个气体分子缔合。 谐振器谐振的频率可以根据哪个气体分子与纳米管层相关联来识别特定气体。 作为共振响应信号,可以表现出共振量。 谐振响应信号的振幅可以指示检测到的气体的浓度水平。
    • 6. 发明申请
    • GAS SENSOR USING NANOTUBES
    • 使用NANOTUBES的气体传感器
    • US20120006096A1
    • 2012-01-12
    • US12997859
    • 2010-07-09
    • H. Sprague AckleyChristopher A. Wiklof
    • H. Sprague AckleyChristopher A. Wiklof
    • G01N29/02
    • G01N33/0055
    • Techniques are generally described for detecting a concentration level of at least one gas. Some example devices may include a sensor including conductive plate on a surface of dielectric including a nanotube layer formed thereon. The conductive plate and the nanotube layer form a resonator that resonates at a frequency in response to an interrogation signal. The nanotube layer may be configured to associate with one or more gas molecules. The frequency at which the resonator resonates may shift according to which gas molecules are associated with the nanotube layer to identify a particular gas. An amount of resonance may be exhibited as a resonant response signal. An amplitude of the resonant response signal may be indicative of the concentration level of the detected gas.
    • 通常描述了用于检测至少一种气体的浓度水平的技术。 一些示例性装置可以包括传感器,其包括在包括其上形成的纳米管层的电介质的表面上的导电板。 导电板和纳米管层形成响应于询问信号以频率谐振的谐振器。 纳米管层可以被配置为与一个或多个气体分子缔合。 谐振器谐振的频率可以根据哪个气体分子与纳米管层相关联来识别特定气体。 作为共振响应信号,可以表现出共振量。 谐振响应信号的振幅可以指示检测到的气体的浓度水平。
    • 7. 发明授权
    • Method and apparatus for capturing an image of a moving object
    • 用于捕获移动物体的图像的方法和装置
    • US07501616B2
    • 2009-03-10
    • US11441859
    • 2006-05-25
    • Christopher A. Wiklof
    • Christopher A. Wiklof
    • G06K7/10H01J3/14H01J5/16
    • G01S17/89G01S7/4817G01S17/023G06K9/20
    • A scanned beam imager or laser scanner is operable to scan an object moving through its field-of-view. The system may include means for detecting direction and/or speed of the object. The velocity detection means may include sensors, an interface for receiving velocity information from other system elements, or image analysis that examines the skew, stretch, or compression in images. Responsive to object movement direction and speed, the scanned beam imager may alter its pixel capture rate and/or its scan rate to compensate. Alternatively or in combination, the imager may perform software-based image motion compensation. In some embodiments, the system may allow the image capture region to pace objects moving rapidly through its field-of-view.
    • 扫描光束成像仪或激光扫描器可操作以扫描通过其视野移动的物体。 系统可以包括用于检测物体的方向和/或速度的装置。 速度检测装置可以包括传感器,用于从其他系统元件接收速度信息的接口或检查图像中的偏斜,拉伸或压缩的图像分析。 对于物体移动方向和速度,扫描光束成像器可能会改变其像素捕获率和/或其扫描速率以进行补偿。 替代地或组合地,成像器可以执行基于软件的图像运动补偿。 在一些实施例中,系统可以允许图像捕获区域使得通过其视野快速移动的对象移动。