会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Apparatus and method for providing harmonized recommendations based on an integrated user profile
    • 基于综合用户简档提供统一建议的装置和方法
    • US08732101B1
    • 2014-05-20
    • US13842665
    • 2013-03-15
    • Nara Logics, Inc.
    • Nathan R. WilsonLuyao LiEmily A. HueskeEleanor C. KenyonThomas C. Copeman
    • G06N3/063
    • G06Q30/0269G06F17/30867G06N3/063G06Q30/0631G06Q50/01
    • In certain implementations, a system may receive attribute data corresponding to attributes of a plurality of users and to one or more venues for which the plurality of users has an affinity. A user personality matrix may be calculated for one or more of the plurality of users based on interrelational nodal link strengths between the one or more users and the venues. The user personality matrices may be merged to calculate a combined personality matrix representing a unified taste profile for the one or more users. A candidate list of venues having the highest link strength with the combined personality matrix may be determined. One or more recommended venues from the candidate list of venues that have the strongest links to the combined personality matrix may be determined, and recommendation data corresponding to the recommended venues may be output.
    • 在某些实现中,系统可以接收对应于多个用户的属性的属性数据以及多个用户具有亲和度的一个或多个场所。 可以基于一个或多个用户和场地之间的相互关联节点链路强度来计算用户个性矩阵中的一个或多个用户。 可以合并用户个性矩阵以计算表示一个或多个用户的统一口味简档的组合个性矩阵。 可以确定与组合人格矩阵具有最高链路强度的场所的候选列表。 可以确定来自具有与组合人格矩阵的最强联系的场所的候选者名单中的一个或多个推荐场地,并且可以输出与推荐场地相对应的推荐数据。
    • 2. 发明授权
    • Systems and methods for providing recommendations based on collaborative and/or content-based nodal interrelationships
    • 基于协作和/或基于内容的节点相互关系提供建议的系统和方法
    • US08515893B2
    • 2013-08-20
    • US13416945
    • 2012-03-09
    • Nathan R. WilsonEmily A. HueskeThomas C. Copeman
    • Nathan R. WilsonEmily A. HueskeThomas C. Copeman
    • G06F1/00G06N5/00
    • G06N5/04G06N3/02G06N5/02G06N5/022G06Q20/203G06Q30/02G06Q30/0269G06Q30/0282H04L67/22
    • In selected embodiments a recommendation generator builds a network of interrelationships between venues, reviewers and users based on their attributes and reviewer and user reviews of the venues. Each interrelationship or link may be positive or negative and may accumulate with other links to provide nodal links the strength of which are based on commonality of attributes among the linked nodes and/or common preferences that one node, such as a reviewer, expresses for other nodes, such as venues. The links may be first order (based on a direct relationship between, for instance, a reviewer and a venue) or higher order (based on, for instance, the fact that two venue are both liked by a given reviewer). The recommendation engine in certain embodiments determines recommended venues based on user attributes and venue preferences by aggregating the link matrices and determining the venues which are most strongly coupled to the user.
    • 在选择的实施例中,推荐生成器基于场馆的属性和评论者以及用户的评论构建场馆,评论者和用户之间的相互关系的网络。 每个相互关系或链接可以是正的或负的,并且可以与其他链接累积以提供节点链接,其节点链接的强度基于链接的节点之间的属性的共同性和/或诸如审阅者的一个节点对其他 节点,如场地。 链接可以是第一顺序(基于例如审阅者和场地之间的直接关系)或更高的顺序(例如,基于例如两个场所都被给定的评论者所喜欢的事实)。 某些实施例中的推荐引擎通过聚合链接矩阵并确定与用户最强耦合的场所,基于用户属性和场地偏好确定推荐场馆。