会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 89. 发明授权
    • Systems and methods for grouping and enriching data items accessed from one or more databases for presentation in a user interface
    • US11681694B2
    • 2023-06-20
    • US17445878
    • 2021-08-25
    • Palantir Technologies Inc.
    • Luke Tomlin
    • G06F16/242G06F16/2457G06F3/0484
    • G06F16/2423G06F3/0484G06F16/24578
    • Embodiments of the present disclosure relate to a data analysis system for grouping and enriching data items for presentation to an analyst through a user interface. Data items from one or more data sources are combined into memory-efficient clustered data structures, which may be stored as one or more data tables in a database. Analysis and scoring of those clustered data structures can be performed by utilizing various criteria or rules to generate scores, reports, alerts, or conclusions that may aid an analyst in evaluating the clustered data structures. The analysis and scoring may also be added to the clustered data structures which are stored as one or more data tables in a database. The analyst may be prompted to create a dossier format or specification and to additional enrichments to be performed on the raw data items in the clustered data structures. The system can also perform versioning on the raw data items in the one or more data tables, wherein the versioning is performed at least by aggregating a subset of raw data items from the one or more data tables. The system may then search, group, or filter the raw data items based on the analyst-defined dossier format, as well as add enrichments to the data. Some examples of enrichments include changing the way the data is displayed, inserting data located in a separate reference table, or ordering data to help construct timelines, histograms, and/or other visualizations based upon the various attributes of the raw data items. The enriched data may be presented to the analyst through a user interface, in the user-defined format or specification in order to allow the analyst to efficiently evaluate the data clusters in the context of, for example, a risky trading investigation.