会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 74. 发明授权
    • Geopositioning method using assistance data
    • 使用辅助数据的地理位置方法
    • US09519064B2
    • 2016-12-13
    • US13256260
    • 2010-03-11
    • Denis LaurichesseFlavien Mercier
    • Denis LaurichesseFlavien Mercier
    • G01S19/44G01S19/04G01S19/43
    • G01S19/44G01S19/04G01S19/43
    • In order to enable a geopositioning receiver of a user to resolve phase ambiguities without necessarily using multi-frequency observations, assistance data is developed thanks to measurements made at a reference network (10, 12, 14) and sent to the receiver of the user. The assistance data used preferably consist of transmitter clock values associated with the carrier code sliding combination (Θeme) or with data sufficient for reconstructing said values. The transmitter clock values associated with the carrier code sliding combination (Θeme) can be reconstructed from iono-free transmitter clock values (heme) and clock biases (C′eme), for example.
    • 为了使用户的地理定位接收器能够解决相位模糊,而不必使用多频观测,由于在参考网络(10,12,14)进行的测量并且发送给用户的接收机,辅助数据被开发。 所使用的辅助数据优选地包括与载波码滑动组合(Θeme)相关联的发射机时钟值或足以重建所述值的数据。 例如,与载波码滑动组合(Θeme)相关联的发射机时钟值可以从无离子发射机时钟值(heme)和时钟偏差(C'eme)重建。
    • 75. 发明申请
    • CARRIER PHASE DISTANCE AND VELOCITY MEASUREMENTS
    • 载波相位和速度测量
    • US20150346349A1
    • 2015-12-03
    • US14293561
    • 2014-06-02
    • ENSCO, Inc.
    • David W.A. TAYLOR, JR.Bradley David FarnsworthEdward Joseph Kreinar
    • G01S19/43G01S19/41
    • G01S11/08G01S5/0263
    • Systems and methods for performing distance and velocity measurements, such as by using carrier signals, are disclosed. A measurement system device may include a first antenna configured to receive a first signal from a transmitting device, the first signal having a carrier frequency, and a second antenna configured to receive the first signal from the transmitting device. The measurement system device may also include a processor configured to determine a first differential distance between the first antenna and the second antenna from the transmitting device and to determine a rate of change of the first differential distance. The processor may also be configured to estimate a geometry of the measurement system device relative to the transmitting device using the rate of change of the first differential distance.
    • 公开了用于执行距离和速度测量的系统和方法,例如通过使用载波信号。 测量系统设备可以包括被配置为从发送设备接收第一信号的第一天线,具有载波频率的第一信号和被配置为从发送设备接收第一信号的第二天线。 测量系统设备还可以包括被配置为从发射设备确定第一天线和第二天线之间的第一差分距离并且确定第一差分距离的变化率的处理器。 处理器还可以被配置为使用第一差分距离的变化率来估计测量系统设备相对于发射设备的几何形状。
    • 76. 发明授权
    • GNSS signal processing with regional augmentation network
    • GNSS信号处理与区域增强网络
    • US09201147B2
    • 2015-12-01
    • US13522323
    • 2011-02-14
    • Xiaoming ChenUlrich VollathKendall Ferguson
    • Xiaoming ChenUlrich VollathKendall Ferguson
    • G01S19/41G01S19/04G01S19/07G01S19/32G01S19/44G01S19/02G01S1/00G01S19/40G01S5/14G01S19/43
    • G01S19/04G01S1/00G01S5/14G01S19/02G01S19/07G01S19/32G01S19/40G01S19/41G01S19/43G01S19/44
    • Methods and apparatus for processing of GNSS data derived from multi-frequency code and carrier observations are presented which make available correction data for use by a rover located within the region, the correction data comprising: the ionospheric delay over the region, the tropospheric delay over the region, the phase-leveled geometric correction per satellite, and the at least one code bias per satellite. In some embodiments the correction data includes an ionospheric phase bias per satellite. Methods and apparatus for determining a precise position of a rover located within a region are presented in which a GNSS receiver is operated to obtain multi-frequency code and carrier observations and correction data, to create rover corrections from the correction data, and to determine a precise rover position using the rover observations and the rover corrections. The correction data comprises at least one code bias per satellite, a fixed-nature MW bias per satellite and/or values from which a fixed-nature MW bias per satellite is derivable, and an ionospheric delay per satellite for each of multiple regional network stations and/or non-ionospheric corrections. Methods and apparatus for encoding and decoding the correction messages containing correction data are also presented, in which network messages include network elements related to substantially all stations of the network and cluster messages include cluster elements related to subsets of the network.
    • 提出了用于处理从多频码和载波观测得到的GNSS数据的方法和装置,其使可用的校正数据由位于该区域内的流动站使用,校正数据包括:该区域的电离层延迟,对流层延迟 该区域,每个卫星的相位级几何校正以及每个卫星的至少一个码偏置。 在一些实施例中,校正数据包括每个卫星的电离层相位偏置。 介绍了一种用于确定位于一个区域内的流动站的精确位置的方法和装置,其中操作GNSS接收器以获得多频码和载波观测和校正数据,以从校正数据中产生流动站校正,并确定 使用流动站观测和流动站校正确定流动站的位置。 校正数据包括每个卫星至少一个代码偏置,每个卫星的固定自然MW偏差和/或每个卫星可衍生固定自然MW偏差的值,以及每个卫星对每个多个区域网络站的电离层延迟 和/或非电离层校正。 还提出了用于对包含校正数据的校正消息进行编码和解码的方法和装置,其中网络消息包括与网络的基本上所有站相关的网络元件,并且集群消息包括与网络的子集有关的集群元素。
    • 77. 发明申请
    • GNSS Signal Processing Methods and Apparatus
    • GNSS信号处理方法与装置
    • US20150301190A1
    • 2015-10-22
    • US13611329
    • 2012-09-12
    • Alexander OsipovIlya KhazanovDmitry KozlovGleb Zyryanov
    • Alexander OsipovIlya KhazanovDmitry KozlovGleb Zyryanov
    • G01S19/42G01S19/24G01S19/05G01S19/43
    • G01S19/33G01S19/37G01S19/41G01S19/42G01S19/425G01S19/43
    • Methods and apparatus are presented for determining a position of a GNSS rover antenna from observations collected at the antenna over multiple epochs from satellite signals of multiple GNSS, wherein the observation data of each GNSS has a distinct data format. The observation data of each GNSS are presented in a generic GNSS data format, which differs from the distinct data format of the GNSS, to obtain a set of generic data. A set of difference data is prepared representing differences between the converted observation data and the generic data. When at least four satellites are tracked, the generic data of the tracked satellites of multiple GNSS are used to compute a standalone antenna position. When at least five satellites are tracked, the generic data of the tracked satellites of multiple GNSS are used to compute a real-time kinematic antenna position.
    • 提出了用于根据从多个GNSS的卫星信号在多个时期在天线收集的观测值来确定GNSS漫游者天线的位置的方法和装置,其中每个GNSS的观测数据具有不同的数据格式。 每个GNSS的观测数据以与GNSS的不同数据格式不同的通用GNSS数据格式呈现,以获得一组通用数据。 准备一组差异数据,表示经转换的观察数据和通用数据之间的差异。 当至少四个卫星被跟踪时,多个GNSS的被跟踪卫星的通用数据被用于计算独立的天线位置。 当至少五颗卫星被跟踪时,多个GNSS的被跟踪卫星的通用数据被用于计算实时运动学天线位置。
    • 80. 发明授权
    • Positioning apparatus and signal processing method thereof
    • 定位装置及其信号处理方法
    • US09103913B2
    • 2015-08-11
    • US13609171
    • 2012-09-10
    • Shiou-Gwo LinHsiao-Lieh Liou
    • Shiou-Gwo LinHsiao-Lieh Liou
    • G01S19/43G01S19/40G01S19/29
    • G01S19/40G01S19/29G01S19/43
    • A signal processing method of a positioning apparatus includes the following steps. A satellite signal is received to provide at least a distance information. A correction value of a phase measurement time is generated according to the distance information and phase data of the satellite signal are corrected in sequence accordingly. The phase data are received and when a quantity of the phase data is equal to a preset quantity, a first low order polynomial fitting and a first Chi-square test are performed to generate an estimated parameter. A next phase data of the satellite signal is estimated to generate an estimated phase data according to the estimation parameter. An actual phase data is obtained. A detection and a compensation of a cycle slip are performed according the estimated phase data and the actual phase data to output a corrected phase observation value.
    • 定位装置的信号处理方法包括以下步骤。 接收卫星信号以提供至少一个距离信息。 根据距离信息产生相位测量时间的校正值,并相应地校正卫星信号的相位数据。 接收相位数据,当相位数据量等于预设量时,执行第一低阶多项式拟合和第一卡方检验以产生估计参数。 估计卫星信号的下一个相位数据,以根据估计参数产生估计的相位数据。 获得实际相位数据。 根据估计的相位数据和实际相位数据执行循环滑移的检测和补偿,以输出校正的相位观测值。