会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明授权
    • Method of making a low dislocation density semiconductor device
    • 制造低位错密度半导体器件的方法
    • US4916088A
    • 1990-04-10
    • US187939
    • 1988-04-29
    • John B. MooneyArden Sher
    • John B. MooneyArden Sher
    • H01L21/20
    • H01L21/0262H01L21/02381H01L21/02395H01L21/0245H01L21/02463H01L21/02502H01L21/02546H01L21/02658Y10S148/015Y10S148/04Y10S148/072Y10S148/097Y10S438/938
    • A low dislocation density semiconductor device includes a first semiconductor layer of a III-V or II-VI semiconductor compound and alloying atoms on a non-metal substrate. The semiconductor compound usually has a large dislocation density. A predetermined position of the alloying atoms in the compound lattice structure can substantially reduce the compound dislocation density. Energy is applied to the alloying atoms so they are at the predetermined positions. The number of alloying atoms causes the semiconductor compound solubility limit to be exceeded. The layer is formed on a substrate of the III-V or II-VI semiconductor, such as gallium arsenide or another semiconductor, such as silicon or on an insulator such as sapphire. In the latter cases, the layer is formed on an intermediate layer having a lattice constant between that of the substrate and semiconductor compound. A second layer is epitaxially deposited on the first layer so both layers have virtually the same lattice constant and dislocation density. The alloying atoms are deposited by different energy assist methods, e.g. by an ion beam that irradiates the substrate, or by an energy assisted organometallic chemical vapor deposition process. The energy assist can be by ionization or optical irradiation causing topical heating of surface atoms deposited by the OMCVD process, without heating of the substrate or the underlying atoms. If the ion beam process is employed, the substrate is annealed such that the alloying atoms move from initial random locations thereof in the compound lattice to the predetermined locations.
    • 低位错密度半导体器件包括III-V或II-VI半导体化合物的第一半导体层和非金属衬底上的合金原子。 半导体化合物通常具有大的位错密度。 复合晶格结构中的合金原子的预定位置可以显着降低复合位错密度。 能量被施加到合金原子上,使得它们处于预定位置。 合金原子的数量导致超过半导体化合物溶解度极限。 该层形成在III-V或II-VI半导体的衬底上,例如砷化镓或诸如硅之类的另一半导体,或者在诸如蓝宝石的绝缘体上。 在后一种情况下,该层形成在晶格常数在基板和半导体化合物之间的中间层上。 第二层被外延沉积在第一层上,因此两层具有几乎相同的晶格常数和位错密度。 合金原子通过不同的能量辅助方法沉积,例如 通过照射衬底的离子束,或通过能量辅助的有机金属化学气相沉积工艺。 能量辅助可以通过电离或光照射引起局部加热由OMCVD工艺沉积的表面原子,而不加热底物或下面的原子。 如果使用离子束工艺,则将衬底退火,使得合金原子从复合晶格中的初始随机位置移动到预定位置。
    • 72. 发明授权
    • Process for growing gallium arsenide on silicon substrate
    • 在硅衬底上生长砷化镓的工艺
    • US4897367A
    • 1990-01-30
    • US324880
    • 1989-03-17
    • Kazuto Ogasawara
    • Kazuto Ogasawara
    • C30B1/02C30B29/42H01L21/20H01L21/203H01L21/324
    • H01L21/02513H01L21/02381H01L21/02433H01L21/0245H01L21/02463H01L21/02505H01L21/02546H01L21/02631Y10S148/025Y10S148/072Y10S148/097Y10S148/149Y10S438/933Y10S438/938
    • A GaAs layer having a high crystallinity can be grown over an Si substrate without warping, by process for growing a GaAs layer on an Si substrate, said process comprising: forming a first GaAs layer in the amorphous state on the Si substrate at a first temperature, the first GaAs layer being formed with a thickness allowing formation of a single crystalline layer having a thickness of one to three monomolecular layers; heating the first GaAs layer to change the amorphous state of the first GaAs layer to a single crystalline state; forming an Si layer on the first GaAs layer at a second temperature higher than the first temperature, the Si layer being formed with a thickness having one to six monoatomic layers; forming a second GaAs layer in the amorphous state on the Si layer at the first temperature, the second GaAs layer being formed with a thickness substantially the same as the thickness of the first GaAs layer; heating the second GaAs layer the change the amorphous state of the second GaAs layer to a single crystalline state; and epitaxially growing a third GaAs layer on the second GaAs layer.
    • 通过在Si衬底上生长GaAs层的工艺,可以在Si衬底上生长具有高结晶度的GaAs层,而不会翘曲,所述方法包括:在第一温度下在Si衬底上形成处于非晶态的第一GaAs层 形成第一GaAs层,其厚度允许形成厚度为一至三个单分子层的单晶层; 加热第一GaAs层以将第一GaAs层的非晶态改变为单晶态; 在高于第一温度的第二温度下在第一GaAs层上形成Si层,所述Si层形成为具有一至六个单原子层的厚度; 在所述第一温度下在所述Si层上形成非晶状态的第二GaAs层,所述第二GaAs层形成为与所述第一GaAs层的厚度基本相同的厚度; 加热第二GaAs层将第二GaAs层的非晶态改变为单晶态; 并在第二GaAs层上外延生长第三GaAs层。
    • 73. 发明授权
    • Method for heteroepitaxial growth using tensioning layer on rear
substrate surface
    • 使用后衬底表面上的张紧层进行异质外延生长的方法
    • US4830984A
    • 1989-05-16
    • US220917
    • 1988-07-18
    • Andrew J. Purdes
    • Andrew J. Purdes
    • H01L21/20
    • H01L21/02381H01L21/02546H01L21/02658H01L29/7842Y10S148/056Y10S148/072Y10S148/097Y10S148/149Y10S438/933Y10S438/938
    • A method, and products formed by such method, of providing a substantially planar surface to a layer of semiconducting material (24) formed on a first surface of a substrate (20), the substrate having a second surface opposite the first surface. The method comprising forming a layer (22) of a first material on the second surface of the substrate; forming a layer of the semiconducting material (24) on the first surface of the substrate; whereby said layer of said first material exerts a tensioning force on said second surface of the substrate (20) which countereffects a tensioning force exerted on said first surface of said substrate by said layer of semiconductor material (24) so that said first surface of said substrate has a substantially planar form. In some embodiments tensioning forces arise due to differential thermal expansion of said first material and said substrate and said semiconductor material and said substrate.
    • 一种方法以及通过这种方法形成的产品,在基板(20)的第一表面上形成的半导体材料层(24)提供基本平坦的表面,该基板具有与第一表面相对的第二表面。 所述方法包括在所述基板的第二表面上形成第一材料层(22); 在衬底的第一表面上形成半导体材料层(24); 其中所述第一材料的所述层在所述衬底(20)的所述第二表面上施加张力,所述第二表面对由所述半导体材料层(24)施加在所述衬底的所述第一表面上的张力作用,使得所述第一表面的所述第一表面 衬底具有基本上平面的形式。 在一些实施例中,由于所述第一材料和所述衬底以及所述半导体材料和所述衬底的不同的热膨胀,产生张紧力。