会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明授权
    • Ultra-hard low friction coating based on A1MgB14 for reduced wear of MEMS and other tribological components and system
    • 基于A1MgB14的超硬低摩擦涂层,可减少MEMS和其他摩擦组件和系统的磨损
    • US07238429B2
    • 2007-07-03
    • US10946051
    • 2004-09-21
    • Bruce Allan CookYun TianJoel Lee HarringaAlan Paul ConstantAlan Mark RussellPalaniappa A. Molian
    • Bruce Allan CookYun TianJoel Lee HarringaAlan Paul ConstantAlan Mark RussellPalaniappa A. Molian
    • B32B15/20C23C14/34C23C14/16C22C21/00
    • C23C14/067B81B3/0075B81C2201/032C23C14/28Y10S428/938Y10T428/12736Y10T428/1275Y10T428/31678
    • Performance and reliability of microelectromechanical system (MEMS) components enhanced dramatically through the incorporation of protective thin film coatings. Current-generation MEMS devices prepared by the LIGA technique employ transition metals such as Ni, Cu, Fe, or alloys thereof, and hence lack stability in oxidizing, corrosive, and/or high temperature environments. Fabrication of a superhard, self-lubricating coating based on a ternary boride compound AlMgB14 is described in this letter as a potential breakthrough in protective coating technology for LIGA microdevices. Nanoindentation tests show that hardness of AlMgB14 films prepared by pulsed laser deposition ranges from 45 GPa to 51 GPa, when deposited at room temperature and 573 K, respectively. Extremely low friction coefficients of 0.04-0.05, which are thought to result from a self-lubricating effect, have also been confirmed by nanoscratch tests on the AlMgB14 films. Transmission electron microscopy studies show that the as-deposited films are amorphous, regardless of substrate temperature; however, analysis of FTIR spectra suggests that the higher substrate temperature facilitates formation of the B12 icosahedral framework, therefore leading to the higher hardness.
    • 微机电系统(MEMS)组件的性能和可靠性通过并入保护性薄膜涂层而显着提高。 通过LIGA技术制备的当前一代MEMS器件采用过渡金属如Ni,Cu,Fe或其合金,因此在氧化,腐蚀性和/或高温环境中缺乏稳定性。 在本文中描述了基于三元硼化物AlMgB 14的超硬自润滑涂层的制造,作为LIGA微型器件的保护涂层技术的潜在突破。 纳米压痕测试显示,当分别在室温和573K下沉积时,通过脉冲激光沉积制备的AlMgB 14 N膜的硬度范围为45GPa至51GPa。 认为是由自润滑效应引起的非常低的摩擦系数0.04-0.05也已经通过AlMgB 14膜的纳米尺度试验证实。 透射电子显微镜研究表明,沉积膜是无定形的,不管基底温度如何; 然而,FTIR光谱的分析表明较高的底物温度有助于形成B 12二十面体骨架,因此导致更高的硬度。
    • 77. 发明申请
    • Method for coating a medical device using a matrix assisted pulsed-laser evaporation technique and associated system and medical device
    • 使用矩阵辅助脉冲激光蒸发技术和相关系统和医疗装置涂覆医疗装置的方法
    • US20050181116A1
    • 2005-08-18
    • US10782056
    • 2004-02-18
    • Rob Worsham
    • Rob Worsham
    • B05D7/24C23C14/04C23C14/12C23C14/28A61L2/00B05D3/00C23C8/00
    • C23C14/28B05D1/60C23C14/12
    • A method is provided for coating at least a portion of at least one medical device. The method includes arranging the at least one medical device in a vapor cone and directing an energy beam at a frozen target. The frozen target includes an agent and the energy beam vaporizes the agent into the vapor cone. A device is provided for coating at least one medical device. The device includes a target assembly, an energy beam directed at the target assembly, and an arrangement adapted to hold the at least one medical device in a vapor cone. The vapor cone originates at a target point that an energy beam beam contacts a frozen target in the target assembly. A medical device is provided having a coating applied by a method. The method includes arranging the medical device in a vapor cone and directing an energy beam at a frozen target. The frozen target includes an agent and the energy beam vaporizes the agent into the vapor cone.
    • 提供了一种用于涂覆至少一个医疗装置的至少一部分的方法。 所述方法包括将所述至少一个医疗装置布置在蒸气锥体中并且将能量束引导到冷冻目标。 冷冻的目标物包括试剂,能量束将试剂汽化成蒸气锥体。 提供了用于涂覆至少一个医疗装置的装置。 该装置包括目标组件,指向目标组件的能量束,以及适于将至少一个医疗装置保持在蒸气锥体中的装置。 蒸气锥体起始于能量束束接触目标组件中的冻结目标的目标点。 提供了具有通过一种方法施加的涂层的医疗装置。 该方法包括将医疗装置布置在蒸汽锥体中并将能量束引导到冻结的目标。 冷冻的目标物包括试剂,能量束将试剂汽化成蒸气锥体。
    • 80. 发明申请
    • Ultra-hard low friction coating based on AlMgB14 for reduced wear of MEMS and other tribological components and system
    • 基于AlMgB14的超硬低摩擦涂层,减少MEMS和其他摩擦组件和系统的磨损
    • US20050100748A1
    • 2005-05-12
    • US10946051
    • 2004-09-21
    • Bruce CookYun TianJoel HarringaAlan ConstantAlan RussellPalaniappa Molian
    • Bruce CookYun TianJoel HarringaAlan ConstantAlan RussellPalaniappa Molian
    • B32B15/04B81B3/00B81B7/00C23C14/06C23C14/28C23C16/00
    • C23C14/067B81B3/0075B81C2201/032C23C14/28Y10S428/938Y10T428/12736Y10T428/1275Y10T428/31678
    • Performance and reliability of microelectromechanical system (MEMS) components enhanced dramatically through the incorporation of protective thin film coatings. Current-generation MEMS devices prepared by the LIGA technique employ transition metals such as Ni, Cu, Fe, or alloys thereof, and hence lack stability in oxidizing, corrosive, and/or high temperature environments. Fabrication of a superhard, self-lubricating coating based on a ternary boride compound AlMgB14 is described in this letter as a potential breakthrough in protective coating technology for LIGA microdevices. Nanoindentation tests show that hardness of AlMgB14 films prepared by pulsed laser deposition ranges from 45 GPa to 51 GPa, when deposited at room temperature and 573 K, respectively. Extremely low friction coefficients of 0.04-0.05, which are thought to result from a self-lubricating effect, have also been confirmed by nanoscratch tests on the AlMgB14 films. Transmission electron microscopy studies show that the as-deposited films are amorphous, regardless of substrate temperature; however, analysis of FTIR spectra suggests that the higher substrate temperature facilitates formation of the B12 icosahedral framework, therefore leading to the higher hardness.
    • 微机电系统(MEMS)组件的性能和可靠性通过并入保护性薄膜涂层而显着提高。 通过LIGA技术制备的当前一代MEMS器件采用过渡金属如Ni,Cu,Fe或其合金,因此在氧化,腐蚀性和/或高温环境中缺乏稳定性。 在本文中描述了基于三元硼化物AlMgB 14的超硬自润滑涂层的制造,作为LIGA微型器件的保护涂层技术的潜在突破。 纳米压痕测试显示,当分别在室温和573K下沉积时,通过脉冲激光沉积制备的AlMgB 14 N膜的硬度范围为45GPa至51GPa。 认为是由自润滑效应引起的非常低的摩擦系数0.04-0.05也已经通过AlMgB 14膜的纳米尺度试验证实。 透射电子显微镜研究表明,沉积膜是无定形的,不管基底温度如何; 然而,FTIR光谱的分析表明较高的底物温度有助于形成B 12二十面体骨架,因此导致更高的硬度。